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Abstract

The Bi-directional Reflectance Distribution Function (BRDF) is used to describe

reflectances of materials by calculating the ratio of the reflected radiance to the in-

cident irradiance. BRDF is often modeled using microfacet models, which assume

geometric optics. Many of these representations conjecture that the facets are dis-

tributed isotropically, and that radiation is scattered symmetrically about the specu-

lar peak, where θi= θs and φs=π in spherical coordinates. While it was found that the

isotropic models maintained symmetry about φs=π, such symmetry was not main-

tained about the θs = θi axis, except for close to the specular peak. This led to

development of a novel data-driven metric for how isotropic a BRDF measurement

is. The isotropic models were investigated along with anisotropic models to develop a

metric of anisotropicity for a given material. As studies of the validity of anisotropic

models have been limited in comparison to studies of isotropic microfacet models,

this study investigated various anisotropic microfacet models, including the Ward

BRDF model. Research efforts centered around developing an algorithm that could

determine material anisotropy without having to fit to models. This algorithm was

tested using high fidelity data, which was collected via a modified Complete Angle

Scatter Instrument (CASI) with a CCD. The modified set-up captured off-axis data

points, accounting for material anisotropies such as machine lining. The algorithm

developed was able to accurately characterize the anisotropicity four out of five ma-

terials. The algorithm works for cases where the BRDF is higher than 100 1/sr. This

algorithm bypasses the step of fitting data to models to determine anisotropy, and

thus is subject less to the flaws associated with various microfacets models (such as

improper modeling of grazing angle behavior). In doing so, this algorithm is intended

iv
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to improve BRDF characterization, ultimately improving the applications of light

curve analysis, scene generation, and remote sensing.
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DATA DRIVEN INVESTIGATION INTO THE OFF-AXIS BRDF TO DEVELOP

AN ALGORITHM TO CLASSIFY ANISOTROPICITY

I. Introduction

1.1 Motivation

As the demands of the warfighting domain increase, so does the need for an ac-

curate and timely picture of the battlespace environment. Remote sensing is a key

component that informs commanders and operators of this environment, filling in key

gaps in the warfighter’s picture. Remote sensing across both the visible and infrared

(IR) wavelengths provides information about the physical features of a scene, as light

reflected off a material’s surface can apprise one of that material’s properties [1]. With

advancements in remote sensing, new sensors can be developed, improving technolo-

gies across the warfighting domain, including aircraft, satellites and munitions.

A fundamental aspect of these remote sensing processes is understanding the Bidi-

rectional Reflectance Distribution Function (BRDF). BRDF is a description of how

incident light reflects or scatters off of a material’s surface, which can then be col-

lected by a detector and provide information about the object [2]. BRDF changes as

the material properties change, as an aluminum surface will reflect light differently

than a copper surface, and a rough surface will reflect light more evenly across a

hemisphere compared to a smooth surface. In accurately modeling the BRDF, one

can use the function to perform more accurate remote sensing [1] [3]. BRDF can also

be used in light curve analysis, as accurate characterization of reflectance data (for

space-based objects) allows one to identify other properties of satellites (such as geo-
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metric properties) [4]. For example, understanding the reflectance of solar panels on

satellites can allow a Space Force operator to determine the orientation of a satellite.

1.2 Research Objective

Currently, the BRDF models used for most applications are geometric approxi-

mations of reflection. These models are known as microfacet models, and simplify

physical optics models, which often are computationally expensive. The microfacet

models work by fitting data to a series of parameters, such as σg, which represents

the distribution of facets, and is proportional to how smooth or rough a surface

is [5]. Essentially, by fitting the data to the models, one can determine the material

composition and surface characteristics of a sample. The models have no predictive

ability; they are merely empirical [6]. This is problematic in that some models fit

some samples better than others; there is no streamlined method to determine sur-

face characteristics other than by fitting BRDF data. For example, to determine if

a sample reflects light isotropically, one must first fit the BRDF data to an isotropic

model to determine quality of fit, which in turn determines the degree of material

isotropy.

This study instead proposes an algorithm in which no fits to models are required

to determine surface characteristics. Instead, the algorithm relies solely upon the

actual BRDF data to determine the degree of surface isotropy or anisotropy. In this

paper, anisotropy is given to mean any surface that produces directionally depen-

dent reflection. This can be due either to a material with directionally dependent

characteristics, such as machine linings or a change in material across a surface (an

inhomogeneous sample). The algorithm is blind to which type of anisotropy is present

in the sample; it merely detects to what extent isotropy is broken. In doing such,

the algorithm prevents a user from erroneously fitting anisotropic data to isotropic
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BRDF models.

The algorithm relies upon a series of image processing techniques to analyze the

degree of rotational symmetry or isotropy present in the BRDF data. This is done by

transforming the BRDF (in scatter coordinate space) into contour plots in direction

cosine space. BRDFs that maintain rotational symmetry in direction cosine space as

θi increases are due to more isotropic surfaces, and the degree to which this symmetry

is broken determines how anisotropic a surface is. Ultimately, the developed algorithm

successfully classified four out of five samples of varying degrees of anisotropy. The

algorithm was found to work best for highly specular materials, as BRDFs (produced

by simulated data sets) below 100 sr−1 cannot be classified by the algorithm. While

some refinement is needed to fine tune the algorithm (especially for the diffuse cases),

this study demonstrates that material classification is possible without requiring data

fits to a model (some of which can be flawed).

1.3 Document Structure

This paper outlines the development and effectiveness of this algorithm, begin-

ning with more background on microfacet models and the current state of research

on anisotropic/out-of-plane BRDFs (Chapter 2). From this background, investigation

began into isotropic and anisotropic microfacet models to determine key characteris-

tics of isotropic and anisotropic materials. In these investigations, an algorithm was

developed to classify materials based on their degree of anisotropicity. The details

of these investigations and development of the algorithm are detailed in Chapter 3.

In Chapter 4, the algorithm is laid out in full detail (in Section 4.2). BRDFs of five

different samples were processed by the algorithm and the results were analyzed in

this chapter. Chapter 5 provides a conclusion and recommendations for future work.
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II. Background

2.1 BRDF

The Bidirectional Reflectance Distribution Function (BRDF) describes how inci-

dent radiation is scattered or reflected off a surface, and is the ratio of the reflected

radiance to the incident irradiance as defined by Nicodemus [2]:

fr(ω̂i, ω̂s, λ) =
dLr(ω̂i, ω̂s, λ)

dEi(ω̂i, λ)
. (2.1)

where fr is the BRDF, ω̂i represents the incident vector with respect to the material’s

surface normal, ω̂s, represents the outgoing or “scattered” vector, Lr, the reflected

radiance, Ei, the incident irradiance, and λ, the respective wavelength. In this study,

only one wavelength was used to illuminate samples, and thus wavelength dependence

will not be considered here. Figure 2.1 illustrates the incidence and scattering angles

[7].

Figure 2.1: This diagram is a 2D representation of the 3D incidence, ω̂i and scatter,
ω̂s vectors for BRDF. This coordinate system can be directly mapped to spherical
coordinates, where θi and θs represent the in-plane direction, and φi and φs (not
shown) are the out of plane direction.

Surface reflections are more readily modeled if the material’s surface is characterized

as specular or diffuse. In the specular case, electromagnetic radiation tends to reflect
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in accordance with Snell’s Law, where the reflected light scatters at an angle (in

spherical coordinates) of θi=θs and φs=π radians [8]. This notation here assumes the

convention where φi=0, so that φs=π radians constitutes forward scatter for isotropic

materials. With anisotropic materials, φi is surface dependent [5]. For the perfectly

diffuse or Lambertian case, light tends to scatter evenly about a hemisphere, so that

the BRDF can be modeled as:

fr =
ρd
π

(2.2)

where ρd represents the diffuse reflectance of a given material [1].

However, in most cases, scattering cannot be discretely categorized as a specular

nor as a Lambertian reflection. Modeling efforts must employ a more sophisticated

approach. There are typically two approaches to modeling BRDF: physical optics

models and microfacet models. The physical optics approach starts with first prin-

ciples by solving Maxwell’s equations at a rough surface. This approach is typically

very computationally expensive and not feasible for most Air Force applications, as

it requires fully characterizing the surface or optical roughness and calculating the

field reflected from the surface. As such, the majority of this work shall focus on

microfacet models.

2.2 Physical Optics Models

Before delving into the details of the microfacet models, this work will first enu-

merate on physical optics models and their relation to microfacet models. These

models begin with a surface transfer function, which is the phase shift produced by

the surface. The Fourier transform of this function is the Angle Spread Function

(ASF), which is related to the BRDF and is equivalent to such in the case of total

Fresnel reflectance.

This formulation (Equation (2.3)) of the Angle Spread Function (ASF) from the
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Modified Beckmann Kirchoff Model uses a Gaussian distribution function to describe

the surface statistics [9] [10] [11].

fa =
πl2cKe

−g

λ2

∞∑
n=1

gm

m!m
exp(−

v2xyl
2
c

4m
) (2.3)

g(θi, θs) = (
2πσs
λ

)2(cos(θi) + cos(θs))
2 (2.4)

In Equations (2.3) (2.4), lc is the correlation length or how often the surface repeats,

K is a term that accounts for conservation of energy (as the original model used a

paraxial approximation [11]), and σs is the surface height standard deviation. vxy

is related to the angular extent in direction cosine space by the wave vector, k.

(Direction cosine space will be explained in greater detail in Section 2.5.)

For the microfacet models, the terms in the physical optics models can be related to

the terms in the microfacet models, specifically when a Gaussian distribution function

is used. For example, the Gaussian width for a rough surface σg is essentially the

probability distribution of microfacet normals, related to σs and lc [12].

σg,vr =
σs
√

2

lc
(2.5)

For glossier materials, the Gaussian width varies with wavelength, and shows that the

microfacet regime does not work well for a highly polished material, as the distribution

should not vary with wavelength. [12].

σg,p =
λ

πlc
√

2
(2.6)

Despite the issues in the glossier regime with respect to σg, physical optics models

were not used in this study. This is due to the fact that the ASF (Equation (2.3))

relies upon an infinite summation, making it computationally expensive for use in
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most Air Force applications. An additional issue with this formulation for the ASF

is that it relies upon Gaussian surface statistics, which does not necessarily describe

all surfaces well.

2.3 Microfacet

The microfacet models start with a geometric optics approximation to simplify

the computational complexity, making modeling the BRDF more tractable for most

applications, including light curve analysis and scene generation. These models ap-

proximate a rough surface as a set of microfacets from which electromagnetic waves

are reflected. Figure 2.2 illustrates the incident ω̂i and outgoing vectors ω̂o relative to

the overall surface normal ẑ, and was formally defined in both the θ and φ dimensions

by Rusinkiewicz [7].

Figure 2.2: This 2D diagram of the 3D microfacet geometry illustrates how there is an
overall macrosurface normal, n, with ωi and ωs as the incident and scattered radiation
relative to n. ωd is the incident vector with respect to the specified microfacet, and
ωh is the orientation or surface normal of the specified microfacet. Reproduction of
Fig. 1 in [13].

While the microfacet models employ the paraxial approximation at the micro-

facet surface, the models also incorporate elements of physical optics models. These

borrowed terms include the Fresnel reflectance, as well as Lambertian and specular

terms.

Generically, microfacet models include a surface reflection term, ρs, which consti-
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tutes a specular reflection and the first term in Equation (2.7), a volumetric scattering

term (the second term), ρvV(ωi, ωo) and a Lambertian scattering term, ρd/π (the final

term) [13]. Butler described the generic terms [13] in Equation (2.7).

fr(wi, wo) = ρsP (ω̂i, ωs)D(ω̂h)F (θd)G(ω̂i, ω̂s)σ(θi, θs) + ρvV (ω̂i, ω̂s) +
ρd
π

(2.7)

Breaking down each component of Equation (2.7) beyond what was described previ-

ously, P merely represents a prefactor term included for some of the microfacet models

to get each in the same form [13]. σ(θi, θs) is a term used to convert from scattering

cross section to BRDF [13]. F is the Fresnel reflection, which will be described in

Equations (2.12)-(2.14).

Equation (2.7) can be used to describe several microfacet models [13] to include the

Sandford-Robertson [3], Blinn-Phong [14], Torrance-Sparrow [15] and Cook-Torrance

models [16]. Most of the development of these models took place in the late 1960s to

early 1980s, generally with the intention of improving computer graphics.

The Cook-Torrance model was developed by a group out of Lucasfilm and Cornell

University, and it took various aspects of previous microfacet models and improved

upon those models [16]. Cook and Torrance began with the assumption that the

surface was composed of various microfacets with differing orientations, similar to

the previously described microfacet geometry. Their BRDF formulation consisted

of a linear combination of specular and diffuse components [16]. The specular and

diffuse components were modeled separately. For the specular component, the BRDF

was modeled as shown in Equation (2.8) [16].

Rs =
F

π

DG

(N · L)(N ·V)
(2.8)

In this equation, F merely represents the Fresnel reflectance, and N the overall surface
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normal. L and V are respectively ωi and ωo in Equation (2.1).

G, in both Equations (2.8) and (2.7) represents the geometric attenuation factor

and describes the shadowing and masking of one facet’s reflections by another facet

[13]. “Shadowing” and “masking” terms imply that the reflection off of certain facets

can be blocked by another facet, so that the reflected light is not captured by the

detector.

D describes the distribution of facet normal orientations. The more facets ori-

ented in the direction of the microfacet surface normal, described by θh, the more

specular reflection that occurs at the surface as opposed to diffuse reflection. D can

be described by a multitude of distributions, including Blinn’s Gaussian model [14]

(Equation (2.9)) and Beckmann’s model [11] (Equation (2.10)). These equation rely

upon θh and m, which is a term that controls the width of the Gaussian and is related

to the specularity/diffusivity of a surface.

D = c ∗ Exp

[
−
(
θh
m

)2
]

(2.9)

D =
1

πm2 cos4(θh)
Exp

[
−
(

tan(θh)

m

)2
]

(2.10)

Cook and Torrance explored both of the distribution functions and found advantages

to using both distribution functions. Beckmann’s model accounts for wavelength de-

pendence, but it adds complexity to calculations. Cook and Torrance found that the

Blinn distribution models were easiest to calculate, but did not describe as compre-

hensively rougher surfaces when compared to the Beckmann distribution in Equation

(2.10) [16]. Ultimately, the Beckmann distribution accounts for the transition region

between physical and geometrical optics, which makes it more suitable for use in

isotropic microfacet BRDF models [16].

Beyond the distribution functions used by Cook Torrance model, Hyper-Cauchy
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distributions have also been used in BRDF microfacet models to describe the orienta-

tion of the facet normals (Equation (2.11)) [13]. As this study focuses on anisotropic

models as well as isotropic models, this distribution function will be largely ignored,

as there exists merely a Beckmann and cosine lobe formulation for anisotropic models.

However, in Equation (2.11), q and s are parameters used to control the width of the

distribution function.

Dg(θh) =
(q − 1)(s

√
2)2q−2

π cos4(θh)((s
√

2)2 + tan2(θh))q
(2.11)

Both the diffuse and specular terms depend on F, the Fresnel reflectance. The Fresnel

reflectance is split into the specular, ρs and diffuse reflectance, ρd in Butler’s formu-

lation [13]. Cook and Torrance modeled these terms by assuming that the extinction

coefficient k goes to zero. The diffuse reflectance term is assumed to be Lambertian,

and is modeled as the reflectance, ρd multiplied by 1/π. The Fresnel reflectance is

described by Equations (2.12), (2.13), and (2.14). Here n indicates the index of re-

fraction of the material, and the perpendicular (⊥) and parallel (‖) terms indicate

the polarization of light. The two terms are combined in Equation (2.14) to get

unpolarized light [8].

ρ⊥(θi, n) =

∣∣∣∣∣∣
cos(θi)− n

√
1− sin( θi

n
)2

cos(θi) + n
√

1− sin( θi
n

)2

∣∣∣∣∣∣
2

(2.12)

ρ‖(θi, n) =

∣∣∣∣∣∣
−n cos(θi) +

√
1− sin( θi

n
)2

n cos(θi) +
√

1− sin( θi
n

)2

∣∣∣∣∣∣
2

(2.13)

ρ(θi, n) =
ρ⊥(θi, n) + ρ‖(θi, n)

2
(2.14)

These equations have been derived from Maxwell’s equations. In the majority of
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BRDF models these equations are used, with a few exceptions, including the Sandford-

Robertson model. [13].

Ewing improved upon the description of both the Fresnel reflectance and Geomet-

ric attenuation term in microfacets by including a Rayleigh-Rice polarization factor,

Q. This factor was better able to approximate grazing angle behavior (cases where θi

approaches 90◦), which was notoriously poorly characterized in previous models [17].

The inclusion of the Q term also better accounts for the previously described geo-

metric attenuation term, G, especially when modeling anisotropic materials [18]. The

new formulation encompassed describing the Fresnel term as Q/2, and the geometric

attenuation term as proportional to Q/F, where F is the Fresnel reflectance. Equa-

tions (2.15), 2.16), (2.17), (2.18) below provide a summary of Ewing’s work. Note

the angles with the subscript s denote the scattered angle. The subscripts for each of

the Q factors represent a different polarization of light, where light can be polarized

in both perpendicular (s) or parallel (p), or a combination of the two. The unpolar-

ized light is a summation of these four polarization states [17]. ñ in these equations

below is equal to n+iκ, where n and κ are respectively the real and complex indices

of refraction. αi,s=
√
ñ2 − sin2(θi,s) in these equations.

Qss =

∣∣∣∣ [ñ2 − 1] cos(φs − π)

[cos(θi) + αi][cos(θs) + αs]

∣∣∣∣2 (2.15)

Qsp =

∣∣∣∣ [ñ2 − 1]αs sin(φs − π)

[cos(θi) + αi][ñ2 cos(θs) + αs]

∣∣∣∣2 (2.16)

Qps =

∣∣∣∣ [ñ2 − 1]αs sin(φs − π)

[ñ2 cos(θi) + αi][cos(θs) + αs]

∣∣∣∣2 (2.17)

Qpp =

∣∣∣∣ [ñ2 − 1]αiαs cos(φs + π)− ñ2 sin(θi) sin(θs)

[ñ2 cos(θi) + αi][ñ2 cos(θs) + αs]

∣∣∣∣2 (2.18)
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2.4 Studies Using Experimental Data

This study employs experimental data to assess the off-axis or out-of-plane nature

of BRDF. The earlier efforts to do so were somewhat limited in scope, in that the

researchers mainly used experimental data to assess the ability of various models to

compute isotropic BRDFs. Generally, the assessment of off-axis data was limited to

the collection and cursory analysis of such data.

Matusik from MIT was the first of these researchers to carry out a comprehensive

effort to capture high fidelity data and assess various BRDF models using such data.

More often than not, BRDF models, to include the Cook and Torrance BRDF model,

are “physically inspired” analytic models providing approximations of the reflectance

of materials [19]. Researchers prior to Matusuik were able to acquire measurements

to assess these models, but the BRDFs were relatively sparsely sampled. Matusik

captured this data via image-based techniques, capturing “330 high dynamic range

pictures,” treating each pixel captured as a separate BRDF measurement [19]. In

total, 20-80 million BRDF measurements were captured for each material. While

these measurements constituted a high dynamic range, it was not the ten orders

of magnitude required for measuring specular BRDFs, working better for more dif-

fuse materials. Ultimately, Matusik leveraged these measurements to interpolate and

extrapolate new BRDFs and generate a surface reflectance model [19].

Ngan expanded upon Matusik’s efforts by using his measurements to evaluate

the performance of various prevalent/notable BRDF models. Ngan also collected

data on four anisotropic materials to analyze the models’ characterization of the

off-axis behavior, discarding data collected at angles close to grazing angles [18].

Generally, Ngan’s group found that most isotropic materials could be represented

well by models that were more physically based. They concluded that models with

more explicit modeling of the Fresnel reflectance produced the best fits of the data
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[18]. Most of the models fell short in simulating anisotropic materials with more

complex micro-geometry. They found that models fell short of adequately capturing

the shadowing/masking or geometric attenuation aspects of BRDF [18]. This study

signaled that models fell short of adequately characterizing off-axis behavior [18].

Most of the research thrusts involving anisotropic behavior, past Ngan’s, have been

improving methods of collecting anisotropic measurements. These include two studies

done by Filip, one using a gonionoreflectometer, and another using an ellipsoidal

mirror and a compact camera [20]. Filip’s group mainly focused on the quality of the

measurements as opposed to the experimental analysis of the models Ngan carried

out.

2.5 Direction Cosine Space

In general, majority of the models analyze BRDF in the coordinate system de-

fined by Rusinkiewicz [12]. However, some of the analysis work has been done in

direction cosine space, such as studies conducted by Harvey. The conversion to co-

ordinate space involves taking the measurements in spherical coordinate space and

converting the coordinates to ∆α and ∆β, which can be correlated to the parameters

of physical optics models mentioned in Section 2.2. The conversion is enumerated

in Equations (3.12)-(3.14) [12]. Looking closely, one can pull out the tan2(θh) term

from the isotropic Beckmann distribution function. Thus, the isotropic distribution

function is symmetric in direction cosine space [12].

∆α = sin(θs) sin(φs − π) (2.19)

∆β = sin(θs) cos(φs − π)− sin(θi) (2.20)

tan2(θh) =
∆α2 + ∆β2

cos(θi) + cos(θs)
(2.21)
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This coordinate system was developed by Harvey as a result of studies involving

physical optics BRDF models. When Harvey plotted radiance measurements in di-

rection cosine space, the measurements were shift-invariant, meaning that regardless

of incidence angle, all of the radiance measurements were the same if scattered off of

the same material [21]. This is not necessarily the case for BRDF measurements, as

optically smooth surfaces tend to be more shift-invariant than rougher surfaces. Gen-

erally, BRDF measurements vary in magnitude with incidence angle and the location

of the peak BRDF can shift off of zero in direction cosine space, as the surface be-

comes rougher and θi increases [21]. For optically smooth and isotropic surfaces, the

BRDF is rotationally symmetric, maintaining the same diameter for in-plane mea-

surements as θi varies [21]. However, this also suggested that rotational symmetry

would be broken if a material is anisotropic. In an experimental study, Butler found

that measurements of both optically smooth and rough surfaces can be scaled by the

directional hemispheric reflectance (DHR) and a cross section conversion term (cos θi

sin θs) to align BRDF measurements in direction cosine space. The study took data

at θi=20◦, 30◦, 40◦ and 50◦, to avoid measurements at grazing angles [22].

2.6 Summary

This chapter discussed the general geometric representations of BRDF, as well as

the microfacet models used to characterize BRDF. The various terms of these models

were discussed, such as the distribution function and geometric attenuation term.

Finally, direction cosine space was discussed as a coordinate space in which isotropy

can be established.
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III. Methodology

3.1 Introduction

This chapter outlines the methodology developed to assess the anisotropicity of

BRDF data. This methodology was developed by first investigating isotropic mod-

els, determining which behaviors remained constant while parameters of the models

were changed. It was found that symmetry about φs=π radians is a key component

of isotropicity, given that φi = 0 for isotropic materials. (This is not the case for

anisotropic materials, as φi is surface dependent). After investigating isotropic mod-

els, anisotropic BRDF models were investigated to find behavior unique to anisotropic

materials. This study exposed flaws in current anisotropic models. From there, sim-

ulated data was produced by isotropic models and transformed to direction cosine

space. Using image processing techniques, information about the symmetry in direc-

tion cosine space was used to signify isotropy. Some of these parameters included the

eccentricity of contour plots. From the results of these investigations, an algorithm

was developed. Using this algorithm, signature beam data was smoothed and fit to

verify the results found with the simulated data. The combination of the results from

the simulated data and signature beam established baselines for what is considered

an isotropic material.

3.2 Generating Simulated Data

In order to develop a methodology or algorithm to assess the degree of isotropy of

BRDF data, simulated data was first created. For isotropic BRDFs, the Beckmann

distribution in the form of Equation (3.1) was used (the terms in these equations are

described earlier in Chapter 2). For anisotropic BRDFs, the distribution function

in the form of Equation (3.2) was used. These distribution functions were then
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plugged into Equation (3.3) to generate simulated data. As mentioned previously,

θh references the orientation of the facet normals. For isotropic materials, no φh

term exists in Equation (3.1) as φi=0. However, this is not the case for anisotropic

materials, where φi depends on the material’s surface, and thus the presence of the

φh term in Equation (3.2).

Dg(θh) =
1

2πσ2
g cos4(θh)

exp

[
−
(

tan2(θh)

2σ2
g

)]
(3.1)

D(ω̂h) =
1

πmxmy cos4 θh
exp

[
− tan2 θh

(
cos2 φh
m2
x

+
sin2 φh
m2
y

)]
(3.2)

fr(θi, θs, φs, σg) = (ρsDbeckmann
Q

2
σ +

ρd
π

) cos(θi) cos(θs) (3.3)

In Equation (3.3), ρs is set to 0.9, to simulate mainly specular reflection and σ rep-

resents a cross-section conversion term to spherical coordinates (cos θi cos θs)
−1. The

Q term uses the index of refraction for Gold, with n=0.27732 and κ=2.9278 [23],

and ρd=0.05 to model diffuse reflectance. BRDFs are then generated by plugging in

either set values or arrays of θi, θs, φi and φs to generate a BRDF that extends a full

hemisphere in scatter coordinate space. BRDFs are then plotted in scatter coordinate

space as a contour plot to generate a “simulated BRDF.”

3.3 Investigation of Isotropic Models

For BRDF microfacet models, the model has a heavy dependence on the distribu-

tion function term. As such, the study focused at first on the distribution function.

The Beckmann distribution function (Equation (3.1)) was the focus of this isotropic

study as it has been found to be computationally inexpensive while accurate for both

optically smooth and rough surfaces.

As the distribution function has a heavy dependence upon θh, the impact of vary-
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ing θi, θs and φs on θh was first investigated. Equation (3.1) above was modeled

computationally, where σg was varied, θi was set to a constant value (15◦, 20◦, 40◦,

45◦ or 60◦), φi was set to 0◦, θs varied from 0◦ to 90◦ and φs varied from 0◦ to 360◦.

φi was set to zero, as this is this standard convention to model forward scattering

occuring at φs=π. The plots in Figure 3.1-3.2 show that the peaks of the distribution

function occur at θi =θs and φs =π, which is the specular peak.

Figure 3.1: 2D slice of θs in scatter coordinate space plotted against the distribution
function (in arbitrary units). θi = 45◦ and σg=0.1 in this plot, and the peak occurs
at θi=θs and φs=180◦, respectively.

Figure 3.2: 2D slice of s in scatter coordinate space plotted against the distribution
function (in arbitrary units). θi=45◦ and σg=0.1 in this plot, and the peak occurs at
θi=θs and φs=180◦, respectively.

When plotting in θh space, it was verified that θh is zero at the specular peak of

θs=θi and φs = π. Additionally, as θi increased, the region where θh was near zero

decreased, meaning that the distribution function spreads out from the specular peak

as θi increases. These findings are summarized in Figure 4.40 where θh is plotted

against the distribution function.
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Figure 3.3: This plot shows θh plotted against the distribution function (in arbitrary
units), where σg=0.1, and θi = 45◦. As one can see here, as θh moves off of zero, the
distribution function drops off significantly. As θi increases, the distribution function
begins to spread out from the peak at θh=0, meaning that the distribution function
spreads out in scatter coordinate space.

The specular peak of θi=θs and φs=π continues to be of importance, as the dis-

tribution function reaches a maximum at the specular peak. For optically smooth

surfaces, the distribution function is strongly concentrated at the peak, and is more

spread out in scatter space for rougher surfaces, where σg is larger. While σg itself

does not directly correspond to how optically rough/smooth the surface is, as it more

so represents the orientation of facets, the two properties can be related to one an-

other. Figures 4.40-3.5show the impact of changing σg, keeping θi constant. The

impact of changing θi is that the peak of the plot shifts in scatter space to where

θs=θi.
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Figure 3.4: Contour plots in scatter coordinate space of the distribution function (in
arbitrary units). The colorbar represents the distribution function divided by the
maximum value for easier comparison. θi = 15◦ and σg=0.1 in this plot.

Figure 3.5: Contour plots in scatter coordinate space of the distribution function (in
arbitrary units). The colorbar represents the distribution function divided by the
maximum value for easier comparison. θi = 15◦ and σg=0.01 in this plot.

Upon verifying these characteristics of the distribution function, the symmetry

of the distribution function about the specular peak in scatter coordinates was in-

vestigated. This investigation was part of an attempt to determine what makes a

material isotropic. The symmetry was first investigated about the point φs=π. The

first attempt to determine symmetry was to step off of φs=π in steps of π/4 radi-

ans to determine if there were any differences moving in φs. A difference plot (for

the distribution function normalized by the maximum value) between φs= 3π/4 and

5π/4 radians for σg=0.1 was generated. It was found that there was little difference
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between the two plots, excepting some computational rounding errors (on the order

of 1× 10−12), as seen in Figure 3.6.

Figure 3.6: This plot shows the difference between the normalized (divided by maxi-
mum value) distribution functions when θi and σg are kept constant at 40◦, and 0.1
respectively and φs is varied from 3π/4 to 5π/4 (in radians). As one can see, the
difference is minimal, on the order of 1× 10−12, which is likely due to computational
rounding error in the trigonometric functions.

This can also be shown analytically, using Equations (3.4)-(3.5) for the in-plane re-

lationship between θh, θi, θs and φs.

2 cos(θd) = cos(θi) cos(θs) + sin(θi) sin(θs) cos(φs) (3.4)

cos(θh) =
cos(θi) + cos(θs)

2 cos(θd)
(3.5)

To evaluate symmetry about φs=π, an arbitrary θi and θs were kept constant and

plugged into the distribution function (Equation (3.1)). The relationship in Equation

(3.6) was found (where b can be any number) showing that the distribution function

is symmetric about φs=π analytically, regardless of distance from this point.

D(θi, θs, π + b)−D(θi, θs, π − b) = 0 (3.6)

When this methodology was extended to the θs direction, the symmetry did not

hold nearly as well. For small changes in θs (on the order of 0.5◦), the differences
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between the distribution function were minimal (at most a difference of 0.2). However,

this difference is still significant in comparison to the differences between moving off

the peak in steps of φs. These differences moving in θs are exacerbated as σg increases,

as the maximum difference for σg=0.01 is 1.5 in comparison to the 0.2 difference for

σg=0.1. While these comparisons were done for specific θi and σg, these differences

were also generalized first by finding an analytic expression, as found with Equation

(3.6) and then by taking the Taylor series expansion about θh=0, (i.e. the specular

peak), to validate these specific cases. Analytically, the expression for the symmetry

about θi=θs reduced to:

D(θi, θi+b, φs)−D(θi, θi−b, φs) =
8

π

−1

cos(b− θi) + cos4(θi)
Exp[

−2− cos(b+ φs) + ...

8 cos(b− θi) + Cos4(θi)
]+...

(3.7)

As shown in Equation (3.7), this does not reduce to a clean expression, indicating that

symmetry is not maintained about θi=θs, if one moves a distance b off this point. For

the Taylor series expansion about θh=0, the expression for the distribution function

reduced to:

D(θh) =
1

2πσ2
g

+
θ2h(−1 + 4σ2

g)

4πσ4
g

(3.8)

The same expansion was then applied to the case where θs=θi with the expectation

that this case would also reduce to a clean expression, as one is moving only a small

distance in θ off of θi=θs. However, such was not the case, and thus the expression is

not included here. When specific values were plugged in for θi and φs, the same issue

resulted. Thus, the previous findings with specified θi, σg were all that one could

conclude using the isotropic distribution functions. Even though these were specific

cases, a number of σg values from 0.01 to 0.1 in intervals of 0.01 was investigated to

determine differences in the distribution function stepping in φs and θs. Based upon

these results, it has been safely concluded that the isotropic distribution function
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maintains symmetry in scatter space about φs=π but not about θi=θs.

The distribution function was then extended to the full BRDF to verify that close

investigation of the distribution function for “isotropicity” was a legitimate method.

The full BRDF followed the form of:

fr = ρsD(θh)Fσ + ρd/π (3.9)

where ρs was set to 0.9, ρd set to 0.05, D was Equation (2.1), σ is a cross section

conversion term, described in the background section, and F was either the Fresnel

reflection (Model 1) or a Q/2, Rayleigh-Rice Polarization Term (Model 2). The

equations describing these models are listed in Chapter 2. Difference plots were

generated in scatter coordinate space for both of these cases. n and κ for the Fresnel

dependent terms were set to 0.27732 and 2.9278i, respectively, which are the indices

of Gold from 0.1879-1.937 µm [23]. The results of the difference plots are shown in

Figure 3.7-3.8.

Figure 3.7: Model 1 using the Fresnel reflectance term compared with the distribution
function.
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Figure 3.8: Model 2 using the Rayleigh-Rice Polarization Term compared with the
distribution function.

While there are no significant differences between the distribution function and

Model 1, near the specular peak there are noticeable differences between Model 2 and

the distribution function. Since these plots are on a relative scale, where each model

has been scaled by its maximum value, differences of 0.15 are somewhat significant.

However, Model 2 handles behavior at grazing angles better than Model 1, as shown

in Figures 3.9-3.10.

Figure 3.9: Model 1 Full Normalized BRDF with σg=0.1, and θi=45◦.
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Figure 3.10: Model 2 Full Normalized BRDF with σg=0.1, and θi=45◦.

While there were differences between the full BRDF and the distribution function,

it was investigated whether the symmetry about φs=π remained. As can be seen in

Figure 3.11, the difference between φs=3π/4 and 5π/4 are on the order of 1× 10−15,

which is likely due to computational rounding errors. Thus, it is safe to say that

symmetry in φs is maintained with the full BRDF, even when Model 2 is employed.

Figure 3.11: This plot shows the difference between the full BRDF (un-normalized)
functions when θi and σg are kept constant at 40◦, and 0.1 respectively and φs is
varied from 3π/4 to 5π/4 (in radians). As one can see, the difference is minimal,
on the order of 1 ∗ 10−15, which is likely due to computational rounding error in the
trigonometric functions.

3.4 Investigation of Anisotropic Models

Upon finishing the in-depth exploration of the isotropic BRDF models, the next

step was to investigate trends in the anisotropic models, beginning with the an-
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iostropic distribution function (Equation (3.2)).

For the anisotropic distribution function, there is both a θh and φh dependence,

and the σg term has been replaced by mx and my, to account for surface roughness

varying differently in x and y. Here m=σg
√

2. When mx = my = m, Equation (3.2)

reduces to the form of Equation (2.1). While φi and θi were both kept constant in the

isotropic case, φi and θi were allowed to vary in these simulations of the anisotropic

distribution function. This is because φi becomes surface dependent, as one must align

this parameter with the sample so that φh=0 at the specular peak. Several different

instances of σx and σy were investigated, some of which where σx was significantly

larger than σy, and vice versa (i.e. 0.1 vs 0.01) as well as cases where σx and σy were

slightly larger than one another (i.e. 0.1 vs 0.09). When both θi and φi were kept

constant (with φi=0), the peak occurred at θi=θs. However, depending on the value

of φi, the specular peak occurred at various φs values. For example, when φi=0 or

360◦, the peak occured at φs=180◦. When φi=90◦, the peak occurred at φs=270◦,

and when φi=270◦, the peak occurred at φs=90◦. The φi values resulted in a peak

exactly 180◦ away in φs. This is due to the fact that the specular peak (where θh

and φh are zero) is given by facets aligned with the macrosurface normal (with the

distribution function peaking at this point). When φi is shifted, the location of the

surface normal changes, causing φs to shift 180◦. This is shown both analytically in

Equation and in Figures 3.12-3.13.

Figure 3.12: Contour plot illustrating how changing φi causes the peak in φs to shift.
Shown for an example where θi=45◦, σx=0.09 and σy=0.1, and φi=0◦.
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Figure 3.13: Contour plot illustrating how changing φi causes the peak in φs to shift.
Shown for an example where θi=45◦, σx=0.09 and σy=0.1, and φi=90◦.

One can also vary θi and φi, allowing the surface to be struck by a cone of illu-

mination as opposed to a single point source. When there is uniform illumination

across θi (this is where θi forms a plane of illumination), the model predicts that

there will be uniform reflection in θs at a plane of a specified φs. When there is

uniform illumination across φi (illumination in a cone), the model predicts that two

peaks will form at φs=90◦ and 270◦, with a much smaller peak at φs=180 ◦. Overall,

the model predicts that changing σx and σy only changes the width of the reflection

(smaller σ results in a smaller peak, as with the isotropic model). Changing σ does

not change the centers of the peaks, only changing φi and θi will change the center

of the scattered radiation. Fig. 3.14-3.15 show the impact of varying either θi or φi,

creating either a plane of uniform illumination in θi or a cone of illumination in φi.

Figure 3.14: Contour plot illustrating how allowing either θi or φi to vary causes
the location of the reflection peak to change. Shown for a case where σx=0.09 and
σy=0.1. Case where φi is a cone of illumination from 0◦ to 360◦, and θi=45◦.
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Figure 3.15: Contour plot illustrating how allowing either θi or φi to vary causes
the location of the reflection peak to change. Shown for a case where σx=0.09 and
σy=0.1. Case where φi=90◦, and θi is allowed to vary.

As one can see in Figures 3.13-3.15, the peak of the distribution no longer neces-

sarily occurs at φs = π radians. The peak remains centered about θi=θs, however,

peaks now occur π radians from φi. This is due to the cosine and sine terms in the

exponential of Equation (3.2), which result in the peaks shifting in φs.

Despite peaks no longer being centered strictly at φs = π, behaviors and trends of

the anisotropic model were investigated, with hopes of expanding upon the symmetry

metric developed from the isotropic models. Thus, the next step was to investigate

symmetries about the specular peak of θi=θs and φs=π. As with the isotropic case,

there were asymmetries about θs. The center (which for isotropic models coincided

with the peak) of the distribution function no longer necessarily occurred at θi=θs.

The symmetry in φs is not maintained for the anisotropic case, either, as shown in

Figure 3.16 below for the case where σx=0.1 and σy=0.01. Here θs is varied and

illuminated by a cone of φi, and slices of φs have been taken. The largest value was

expected to occur at φs = π, which it does, but the slices at φs = π/2 and φs = 3π/2

are not equivalent, indicating a lack of symmetry in φs.
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Figure 3.16: This plot shows various slices of φs at π/2, π and 3π/2 (radians), for the
case where θi=45◦,σx=0.1 and σy=0.01, and φi is a cone of illumination. Symmetry
is not maintained in φs as the distribution function values vary significantly for φs
values that are equally spaced from φs=π.

While looking at the symmetry in φs proved to be a dead end for the anisotropic

models, another approach was attempted to categorize materials as either isotropic

or anisotropic. Looking at the form of Equations (2.1) and (3.2), one can divide out

the normalization term, take the log of each equation and divide each equation by

− tan2(θh) to get each equation in the form of Equations (3.10)&(3.11).

1

2σ2
g

(3.10)

cos2(φh)

m2
x

+
sin2(φh)

m2
y

(3.11)

These equations appear to follow the familiar form of the circle equation and ellipse

equations, where (x − h)2 + (y − k)2 = r2 is the circle equation x2/a2 + y2/b2 =

1 is the ellipse equation. Thus, the next step was to model various isotropic and

anisotropic instances (dividing out the normalization term, tan term and taking the

log) to attempt to simplify modeling BRDF based on σg or mx and my values.

For the isotropic case, it was found that reducing the modeled data to the form of

Equation (3.10) produced Figures 3.17-3.18. The line at y=5000 directly corresponds

to 1/σ2
g divided by 2, when σg=0.01. Reducing the anisotropic distribution function
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to the form of Equation (3.11) produces Figure 3.17-3.18, where the maxima and

minima of the plot directly correspond to 1/m2
x/2 and 1/m2

y/2, depending on if mx

or my is larger.

Figure 3.17: Isotropic Distribution Function in the form of Equation (3.10) when
σg=0.01.

Figure 3.18: Anisotropic distribution function in the form of Equation (3.11), where
mx=0.09 and my=0.1

However, extending the to the full BRDF does not produce the same clean linear

relationship for isotropic BRDFs (when plotted against θh) nor the same sinusoidal

trend for anisotropic BRDFs (when plotted against φh). This is likely due to the

inclusion of additional terms for the full BRDF, especially that of the Rayleigh Rice

Polarization factor term. This term has several componets which distort the sinuosidal

relationship between φh and Equation (3.11) and the linear relationship between θh

and Equation (3.10). The linear relationship for isotropic BRDFs is only accurate for

a small region close to the specular peak at θh=0. This is shown in Figures 3.19-3.20.
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Figure 3.19: Log of Isotropic BRDF divided by tan(θh)
2 when σg=0.01.The straight

line at y=5000 is the distribution function is the plot, and the curved line is the
BRDF.

Figure 3.20: Log of Anisotropic BRDF divided by tan(θh)
2, where mx=0.09 and

my=0.1 The thinner line is the distribution function, and the thicker line is the
BRDF.

Ultimately, while algebraic manipulation of Equation (2.1) and (3.2) were able to

simplify modeling the distribution function, the addition of terms to extend to the

full BRDF made this method of determining anisotropy infeasible. The hope was

that when extended to the full BRDF, one would quickly observe if a plot of the log

divided by the tan term versus θh would produce a linear plot indicating isotropy or

if it would produce a sinusoidal plot when plotted against φh, indicating anisotropy.

However, upon further consideration, this method would not be robust, failing for

materials that fall between “perfectly isotropic” or “very anisotropic.” Thus, this lack

of robustness, paired with the non-physical results (see Figures 3.14-3.15) produced

by the anisotropic distribution function, meant that the model was abandoned as a

means of determining metrics for isotropy/anisotropy.
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Instead, what was proposed and ultimately used for this study, was to build an

algorithm that assess the degree of isotropy of each material. This was done as,

firstly, the investigation of anisotropic models did not produce any fruitful metric for

assessing a material’s anisotropy. Secondly, the anisotropic models rely heavily upon

align the sample adequately so that φi produces a φh=0. With experimental data,

sample alignment is difficult to do (especially with more diffuse materials), and relying

upon models that require precise alignment to judge anisotropy is not necessarily the

best approach. Thus, the algorithm (which is detailed in Section 4.2), was developed

with the intention of assessing deviation from isotropy in order to determine if an

isotropic model can be used for the data set, or if other models should be used.

3.5 Fitting Routines in Direction Cosine Space

While algebraic manipulation of the distribution functions (in θ) did not yield

clean results, it was found that transforming BRDFs to direction cosine space pro-

duced results that could distinguish isotropic from anisotropic surfaces. This is be-

cause the tan2(θh) term present in the distribution function can be directly correlated

to direction cosine space terms ∆α and ∆β through Equations (3.12)- (3.14).

∆α = sin(θs) sin(φs − π) (3.12)

∆β = sin(θs) cos(φs − π)− sin(θi) (3.13)

tan2(θh) =
∆α2 + ∆β2

cos(θi) + cos(θs)
(3.14)

In fact, the isotropic distribution function is rotationally symmetric about the

specular peak in direction cosine space. This symmetry is shown analytically in

Equations (3.15)-(3.16), where ∆α and ∆β are plugged into Equation (3.1) to evaluate
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the rotational symmetry.

D(∆α + b,∆β)−D(∆α− b,∆β) = 0 (3.15)

D(∆α,∆β + b)−D(∆α,∆β − b) = 0 (3.16)

The diameter/angular spread of the BRDF remains constant as θi increases in direc-

tion cosine space. This is the case for in-plane data, when the second (cosine) term

in Equation (3.13) is dropped. When out-of-plane data is incorporated, the isotropic

distribution function remains symmetric in ∆α space, but not in ∆β space. This is

because the same change in θs space does not correspond to an equivalent change in

∆β space. The change in ∆β space is dependent upon θs as shown in Figure 3.21.

Figure 3.21: This plot shows how a change in θs is not the same across all θi in ∆β
space. While the relationship between θs and ∆β is linear, the slope of these lines
depends upon θs (which is represented by each line for θi= 20◦, 40◦ and 60◦).

Additionally, the overall diameter, semi-major and semi-minor axes of the BRDF

decrease by a constant factor as θi increases when out-of-plane data is considered.

The constant factor of decrease depends upon θs. To map the relationship between

the diameter of the BRDF at θi=20◦ and 40◦, one must determine the slopes of the

lines in Figure 3.21. Dividing these slopes by one another, one can find the constant

factor required to get the same diameter for each θi. This data has been included

for the simulated data for both scaled and unscaled measurements of the diameter,
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semi-major and semi-minor axes of the BRDF in direction cosine space.

Since this study dealt with out of plane data, the isotropic distribution function

and BRDF were analyzed (using simulated data) in both the 3D Direction Cosine

Space, and the 2D ∆α space. Figures 3.22-3.23 illustrate the symmetry in ∆α and

how incorporating out of plane (φs) data breaks symmetry in ∆β. The distribution

function becomes more skewed in ∆β as σg increases, meaning that optically smoother

surfaces produce more symmetric BRDFs in direction cosine space.

Figure 3.22: Isotropic Distribution function vs ∆α a σg=0.005. θi is represented here
by each of the different colored lines in the legend. Symmetry is maintained for ∆α.
Note that the heights of the distribution function differ as θi changes, but the width
in ∆α remains constant.

Figure 3.23: Isotropic distribution function vs ∆β.θi is represented here by each of
the different colored lines in the legend.

For Figure 3.22, it was found that the full width half maximum (FWHM) re-

mained constant at ∆α=0.01, even as θi increased. This was not the case for Figure

3.23. When these plots were extended to the full BRDF, the asymmetry in ∆β was
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exacerbated, however, the FWHM remained fairly constant (with a standard devia-

tion of 0.002), with each measurement at each θi rounding to the ∆α=0.01 FWHM

found for the distribution function.

While including out-of-plane data somewhat breaks the symmetry of these BRDF

measurements, one way of measuring the “relative symmetry” is to look at how

contours of BRDF change or remain constant in eccentricity. This was something

that was investigated in addition to the previously mentioned diameter, semi-major

and semi-minor axes of the BRDF in direction cosine space. The contour plot in

Figure 3.24 shows how the eccentricity of each contour remains constant for isotropic

data. The existence of “white space” in Figure 3.24 is due to the fixed spatial extent

created by converting from spherical coordinates to direction cosine space. Were the

plot for a θi=0◦, there would be no white space, as it is a 1:1 conversion from spherical

coordinates to direction cosine space.

Figure 3.24: This plot shows how the eccentricity remains constant in direction cosine
space for an isotropic BRDF with a σg=0.005 and θi=20◦. The average eccentricity
was 0.897±0.006 for this particular θi.

The eccentricity was determined (along with other parameters such as diameter,

center of contours, and semi-major axis) by converting the image to pixel coordinate

space. A series of image processing techniques was used to measure these parameters

[24]. The image is then converted to a binary image using red, green and blue channels

to extract each unique contour. An example of a binary image where the inner most

contour has been detected is shown in Figure 3.25.
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Figure 3.25: Binary image of the innermost contour, separated using a red filter. The
red channel is used, as yellow (color of the innermost contour) is closest to red out of
the three possible channels of red, green and blue.

For example, the innermost contours can be distinguished by using the red channel

(as yellow is closest to red), while the outermost contours are distinguished by using

the blue channel (referring to Figures 3.24-3.25), and the middle contours can be

separated by the green channel. The image is then transformed using the Hough

transform to determine the edges of each contour and attempts to fit ellipses to the

edges detected [24]. From there, the algorithm estimates parameters such as the

semi-major and semi-minor axes of each ellipse fit. The eccentricity is computed by

dividing the semi-minor axis by the semi-major axis. Figure 3.26 shows the fit created

from the binary image (Figure 3.25).

Figure 3.26: Ellipse fit to Figure 3.25. The algorithm detected an ellipse with an
eccentricity of 0.83.

Table 3.1 below summarizes all of the data collected for the simulated isotropic

BRDF data. The symmetry data about φs is not included as it was previously found
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that the percentage difference of the simulated isotropic BRDFs was zero, when taking

into accounting computational rounding error (see Section 3.3).

Table 3.1: Table summarizing various parameters for the simulated isotropic data
collected at θi=20, 40 and 60◦ for a set σg=0.005. The diameter, semi-major and semi-
minor (of the outermost contour) axes vary as θi increases, as out-of-plane information
was taken into account. When the θi=40 and 60◦ measurements are scaled (ref.
Chapter 2 for scaling factors), the standard deviation of these measurements drops
significantly, signifying rotational symmetry.

Material θi Mean Scaled Scaled Scaled X Y FWHM
(Deg) Eccentricity Major Minor Diameter Center Center (∆α)

Axis Axis (Pixels) (Pixels) (Pixels)
(Pixels) (Pixels)

Sim Isotropic 20 0.89 168.06 150.21 130.95 132.98 114.34 0.012
Sim Isotropic 40 0.81 186.23 151.57 136.41 136.63 109.03 0.014
Sim Isotropic 60 0.82 174.65 143.22 136.41 136.63 108.50 0.011

Average 0.84 176.31 148.33 134.80 134.79 110.62 0.012
STD 0.04 9.20 4.48 3.35 1.82 3.23 0.002

While the semi-major axis, semi-minor axis and diameter vary as θi increases, other

parameters in Table 3.1 remain relatively constant. This variation decreases when

each is scaled by the factors determined from dividing the slope of each line by the

θi= 20◦ line in Figure 3.21. For the 40◦ line, the scaling factor is 1.23, and for the

60◦ line, the scaling factor is 1.86. Part of this variation (for both the unscaled and

scaled data) is due to including out-of-plane information, but some is also due to the

fact that symmetry is broken by the Q factor, ρs and ρd terms in the BRDF equation

(ref. Equation (3.3)). When including out-of-plane data, the low standard deviation

of eccentricity acts as a stand-in for symmetry. This is because a higher (as well as

more consistent) eccentricity (closer to 1) signifies that the BRDF changes at nearly

the same rate in all directions, signifiying isotropy, whereas a less eccentric, as well as

rapidly varying contour eccentricity denotes anisotropy. This metric works better for

more specular materials, as it becomes the contours become larger, eventually trans-
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forming into horizontal lines as σg increases (See Section 4.10 for plots). However,

the standard deviation in eccentricity remains low, even as σg increases. Ideally, the

eccentricity would be 1, but because the full BRDF introduces asymmetry in direction

cosine space, the eccentricities recorded in the table are the new ideal. The x-center

and y-center standard deviation terms in Table 3.1 also relate to this, as it means that

the contours are being measured from the same point. If the eccentricity remained

consistent, but the contours were measured from rapidly varying points, this would

indicate anisotropy. The combination of the relatively constant eccentricity and con-

stant x and y center coordinates indicates isotropy. The final term of Table 3.1, Full

Width Half Maximum (FWHM) also indicates material isotropy. This is because a

low standard deviation in this term means that the BRDF remains symmetric about

∆α as θi changes. Referring to Figure 3.22, the distribution function remains rela-

tively constant when plotted against ∆α. This is directly correlated to the rotational

symmetry Harvey observed with in-plane data [21], as well as to the symmetry in φs

observed in scatter space.

3.6 Beam Signature Data

Up until this point, the methodology development only included simulated data

to determine what makes a material isotropic or anisotropic. As the intention of this

study was to evaluate actual experimental data, the methodology needed to be tested

on known isotropic sources. In order to test and validate the methodology developed,

beam signature data was also analyzed. The beam signature is the Helium-Neon laser

source which was used to illuminate all of the samples. The beam signature is merely

the source, not reflecting off of any sample, which is then captured by the CCD. As

the beam has not reflected off any surfaces, its radial symmetry is assumed to be

representative of an isotropic sample. Any “anisotropies” (i.e. why the beam is not
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perfectly round) captured are likely due to noise or from the off-axis parabolic mirror

in the laser set-up. There is no spatial filter in the setup, so the beam is not exactly

Gaussian. Figure 3.27 below shows a contour plot of the beam signature plotted in

pixel coordinate space. A Gaussian filter with a σ=1 was applied to the image to

filter out some of the noise associated with the data collected.

Figure 3.27: Contour plot of the beam signature in pixel coordinate space. A Gaussian
filter with a σ of 1 was applied to this image. The scale on the plot is a relative BRDF,
which was divided by the maximum value (thus, the maximum value here is 1).

At first glance, the beam signature appears relatively similar to the simulated

isotropic BRDF in Figure 3.24. The contours appear to have a relatively high ec-

centricity, and the beam appears relatively symmetric. However, since the beam

signature data is not a reflection (it is the CCD directly collecting on the beam), the

data here is a simulation of the case where θi=θs=0◦. Thus, in direction cosine space,

∆β=0 when this is the case (ref. Equation (3.13)) and therefore all of the analysis

was done in pixel coordinate space. Despite this difference, the beam signature data

compared well with the simulated isotropic data. This is expected as Harvey states

that the beam is symmetric in scalar wave optics theory [21]. Table 3.2 summarizes

the beam signature’s characteristics. The FWHM, diameter, and semi-major/semi-

minor axis measurements here were ignored as the beam signature was only taken

at one angle, and so those parameters do not serve as a useful metric of rotational

symmetry here. Three separate measurements of the beam signature were collected

and averaged in Table 3.2 below.
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Table 3.2: Table summarizing the parameters measured for the beam signature. These
measurements have been reported to help determine a baseline error in the data
collected and the algorithm used to fit the data. The standard deviation represents
the uncertainty in these measurements. Based upon the developed methodology, the
beam signature is ruled as “solidly isotropic.”

Material Mean Dif Min Dif X Y Eccentricity Classification
Symm Symm Center Center

(%) (%) (Pixels) (Pixels)
Beam Sig 9.11 6.90×10−5 166.65 ±1.00 53.86±2.25 0.73±0.04 Solidly Isotropic

Based on the metrics developed previously, the beam signature is ruled as solidly

isotropic. Firstly, the beam signature exhibits significant symmetry about Y in pixel

coordinate space (would translate to φs in scatter coordinate space). The mean

percentage difference when the beam signature is folded in half about the center Y

coordinate is 9.11%. The center coordinate was determined by indexing the maximum

value of the BRDF, assuming that the beam was well-aligned with the CCD, and the

maximum value occurred exactly at θs=0◦. While the percentage difference in sym-

metry is higher than the 0% difference recorded for the simulated data, the simulated

data also has no noise, and the laser passed through an off-axis parabolic mirror be-

fore being captured by the CCD. The off-axis mirror likely added some anisotropy to

the data. However, this certainly serves as a good baseline for the experimental data

to determine what consitutes “noise” or experimental uncertainty. The other param-

eters such as the mean eccentricity and x-center and y-center metrics also compare

well to the simulated data. The eccentricity varies the same amount as the simulated

data with a standard deviation of 0.04. However, with a perfectly Gaussian beam,

the eccentricity should be 1. Thus, the difference of 0.27 serves as a measurement

uncertainty here. The center of the ellipse measurements actually varies less than

that of the simulated data, also indicating a higher degree of “isotropy.” Thus, based

upon all of the metrics, the beam signature has been classified by the algorithm as
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“isotropic,” and helps create a baseline for what constitutes isotropic data.

3.7 Baselines for Isotropicity

Table 3.3 below summarizes the baselines developed from both the simulated

isotropic data and the beam signature data. The scaled diameter, X and Y center,

and the FWHM metrics have been derived from the simulated data, as these measure

how each of these parameters change with an increasing θi. The diameter and FWHM

change in value as σg increases, but the standard deviation remains low for both of

the parameters, which is why the standard deviation is used for these categories in

lieu of the actual value. This is why the simulated data is used in this case opposed

to the beam signature data. For each of these parameters, the lower the standard

deviation, the more isotropic the sample is, as each parameter denotes rotational

symmetry in direction cosine space. The eccentricity and mean symmetry baselines

were derived from the beam signature. These baselines account for any noise in the

experimental set-up, as some of the eccentricity measurements can be affected by

Gaussian noise, as smoothing the noise further created contour plots of the beam

signature with eccentricities closer to 1. This was not done in this study as a σ=1

(for the Gaussian filter) was applied, to ensure that the inherent variability was still

captured. The mean symmetry metric also accounts for some of this noise, and thus

the beam signature baseline was used in lieu of the simulated data.

Table 3.3: Table summarizing the various baselines for isotropicity developed from
the simulated data and beam signature data. STD stands for standard deviation.

Scaled Diameter X/Y FWHM Eccentricity Mean Symm
(STD) Center (STD) (Value + STD) (% difference)

(STD)
Baseline 3.35 3.23 0.002 0.73 ± 0.04 9.11

In Table 3.3 above, the STD “unit” indicates standard deviation. In this study,
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each of these baselines were used to determine the isotropicity of each material. The

closer each measured value was to the baseline, the more isotropic the material was

considered. The results of such will be discussed further in Chapter 4.

3.8 Summary of Methodology

This section provides a summary of the methodology developed and a step-by-step

list of the algorithm used for processing experimental data.

In this study, isotropic models were first investigated to develop a symmetry metric

about φs in scatter coordinate space. This metric is the mean symmetry when the

contour plot of the BRDF in scatter coordinate space is folded about φs=π, and the

percentage difference that results between the points above π and below π. The second

set of metrics was developed by converting plots to direction cosine space, resulting

in measurements of the eccentricity, diameter, x-center, and y-center of the contours

of BRDF in direction cosine space. A low standard deviation in these measurements

indicates rotational symmetry in this space. The FWHM of the BRDF when plotted

against ∆α was also measured, to account for the asymmetry in ∆β when including

out-of-plane data. Overall, six different metrics (x-center and y-center are counted as

separate metrics), each with their own baselines were developed and determined to

be used in the data processing section, discussed in Chapter 4. Below is a summary

of the steps used to process data.

Steps for Processing Data for each measurement at a given θi

1. Apply Gaussian Filter with a σ=1.

2. Convert the data to a logarithmic plot by narrowing down CCD data to within

2 orders of magnitude below the peak value

3. Look at the symmetry about φs=π. Fold the data in half about this point and

subtract the data below π (left-hand side) from the data above π (right-hand side),
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dividing by the left-hand side to get a relative percentage difference.

4. Convert from scatter coordinate space to direction cosine space, and normalize

the data by dividing all of the values by the maximum.

5. Plot the BRDF data against ∆α and calculate the Full Width Half Maximum.

6. Convert the data to various binary images using red, green, and blue channels.

7. Apply the Hough transform to perform edge detection and use the algorithm

to fit ellipses to these edges.

8. Collect and Record information on the semi-major axis, semi-minor axis, center,

diameter and eccentricity of each measured ellipse. Scale 40◦ measurements by 1.23

and 60◦ measurements by 1.86 (as determined in Section 5 of this Chapter).

In the next chapter, these steps will be applied to five different samples to assess

their isotropy/anisotropy.
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IV. Results

4.1 Introduction

This section provides an in-depth discussion of the results of the algorithm de-

scribed in the Methodology chapter. (A step-by-step version of this algorithm is

shown in section 2 of this chapter). This algorithm was applied to five different ma-

terials of varying roughness and isotropy. The materials were at first qualitatively

analyzed in terms of isotropy before applying the algorithm (shown in section 3). Maj

Todd Small measured each of these samples using a Complete Angle Scatter Instru-

ment (CASI) with a CCD. The samples were each illuminated by a Helium-Neon laser

source (which was the beam signature sample described in Chapter 3). The samples

were all rotated so that the beam illuminated the samples at θi=20◦, 40◦ and 60◦.

The CCD was then able to capture data over a full hemisphere (capturing in-plane

as well as out-of-plane measurements). The CCD has a resolution able to capture

0.001◦ per pixel. It also has a dynamic range able to capture six orders of magnitude,

ensuring high fidelity experimental data. The algorithm was applied to each of these

measurements, and was able to successfully classify four out of five of the materials.

Applying this algorithm to actual data determined that the algorithm works well on

specular data, but begins to decline in performance as BRDF drops. The conditions

for which the algorithm will work were determined, as it fails to classify samples where

the measured BRDF is below 100 1 sr−1, or using the Beckmann distribution, cases

where σg is greater than 0.1. The algorithm is able to classify specular materials by

looking at data as opposed to attempting to fit to models to classify the data.
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4.2 Algorithm

This section details the steps of the algorithm used to classify each material. The

final results of this algorithm are shown in Section 10 in Table 4.34.

Given BRDF measurements of a material at a certain θi in scatter coordinate

space:

1. Measure the mean symmetry about φs=π.

2. Convert to direction cosine space.

3. Measure the diameter, x and y center of each contour, the FWHM of the data

against ∆α, and the eccentricity of each contour centered about the peak BRDF

value.

4. Scale the FWHM and diameter measurements according to θi.

5. Combine all of the data for the material (for all θi), and find the standard

deviations for scaled diameter, x/y center, FWHM and eccentricity.

6. Find the mean of the symmetry and eccentricity measurements.

7. Compare each of these parameters to the baseline (find percentage differences).

8. Weight each parameter by the appropriate factor.

7. Find final score and categorize as isotropic or anisotropic. Scores lower than 1

are highly isotropic, scores 1-10 lean isotropic, scores greater than 10 are anisotropic,

and those greater than 30 are highly anisotropic.

4.3 Pixel Space to Scatter Coordinate Space Conversion

As the data was captured using a CCD, the BRDF measurements were each

associated with an x and y value in pixel coordinate space. In order to determine

symmetry in both scatter coordinate space and ultimately direction cosine space, a

conversion was required between pixel space and scatter coordinate space. These

conversions were determined by tracing a ray from a point on the sample to a pixel
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on the CCD. Figure 4.1 is a 2D representation of the in-plane measurements.

Figure 4.1: The blue square here represents the material surface, and θc, the angle
between the center pixel (red dot) and the material surface normal, n̂. θs, the angle
between n̂ and the target pixel (green dot) can be found using a series of trigonometric
relationships if θx, θc and θy are known.

Referring to Figure 4.1, the calculation of the in-plane or θs direction is relatively

straightforward. θc represents the angle between the surface normal, n̂ and the center

pixel (represented by a red dot in Figure 4.1), and is a known value as it is simply the

detector arm angle. θx and θy are also known values, as they are the angles from the

center pixel to the target pixel (green dot). Using these parameters, one can apply

simple trigonometry to determine θs, using Equation (4.1) [25].

θs = θc +
√
θ2x + θ2y (4.1)

Calculation of the out-of-plane direction (φs) requires changing the orientation of

the CCD. Figure 4.2 illustrates the out-of-plane (φ) information in 2D. Using this

image as a guide, one can then determine φs.
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Figure 4.2: The blue square here represents the material surface, and φi was set to
0◦. R sin(θc) was the distance from the sample to the center pixel (red dot). x and y
were the horizontal and vertical pixel distances, respectively, from the center pixel to
the target pixel (green dot). Using these, it was possible to calculate γ to ultimately
find φs.

Figure 4.2 shows (as a 2D representation) how one can use the known values

of φi, which was set to zero, R sin(θc), the distance from the sample to the center

pixel (represented by a red dot), and x and y, the horizontal and vertical distances,

respectively, from the center pixel to the target pixel (green dot) could be used to

find γ. Equations (4.2)-(4.3) show how these values can be used to find φs [25].

γ = tan−1
y

x+R sin(θc)
(4.2)

φs = φi + π + γ (4.3)

Equations (4.1)-(4.3) were used in this study to convert pixel data to the scatter

coordinate space, which will be the standard coordinate system for the BRDF data.

All of the initial contour plots in scatter space were converted using these equations.

It is worth noting that these conversions have created “white spaces” in each of these

plots which are due to a fixed spatial extent translation. As θs increases, the range in

φs decreases, creating the “white space” observed in some of the plots shown later.

This same phenomenon is the reason why the θi=40◦ measurements span half the

range in φs than the 20◦ measurements, and the 60◦ measurements half the range

that the 40◦ measurements do.
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4.4 Overview of Materials

This section provides an overview of all of the materials used in this study to

produce BRDF data with both in-plane (θ) and out-of-plane (φ) information. Each

of the materials are visually assessed to be either leaning isotropic or anisotropic.

Throughout this chapter, these initial assessments will then be tested by the algorithm

developed in Chapter 3 to determine how well the algorithm works.

4.4.1 Lab Mirror

The lab mirror sample was the first sample to be analyzed, and an image of the

sample is shown in Figure 4.3. At first glance, it does not visually appear to have any

features that would produce anisotropies. The surface does not appear to have any

scratches or visible machine linings, overall appearing to be a very smooth surface.

The sample is an aluminum coated surface that is highly specular, as evidenced by the

reflection of the ceiling tiles present on the mirror. Overall, with these characteristics,

it was determined that this sample is an isotropic surface.

Figure 4.3: Image showing the mount and mirror used to generate BRDF data. The
sample is a coated aluminum that is highly specular, as evidenced by the reflection
of the ceiling tiles on the mirror. The sample appears quite smooth with no visible
scratches or machine lines.
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4.4.2 Kapton

Figure 4.4 below shows an image of the Kapton material used for this study.

Overall, the Kapton material appears less reflective (and thus less specular) than the

mirror, which is likely due to the fact that it is a semi-transparent thin film. Thus,

more light is passing through the material and not being reflected by the surface.

The material does not visually appear to have any machine linings that could would

strongly favor anisotropic reflection, however, the sample does have a few scratches

(some brighter spots on the material than in other locations). It is worth noting that

if Kapton is not laid completely flat, it can impact the reflectance of the material.

Thus, this sample was predicted to be lean isotropic.

Figure 4.4: Image of the Kapton material (including the mount used to rotate the
sample) used to collect out of plane BRDF data. The Kapton is a thin film that
is semi-transparent. There appear to be a few scratches, or brighter spots on the
sample.

4.4.3 Polished Alumnium

Figure 4.5 is an image of the polished aluminum sample used for this study. The

sample is highly specular, as in the image, one can glimpse the reflection of the ceiling

tiles on the sample (though not as specular as the mirror). Worth noting is the fact
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that the sample has noticeable machine lines, which are the series of circular lines

that appear in Figure 4.5. The presence of these circular machine lines indicates a

high degree of material anisotropy, as the linings are not homogeneous across the

sample, so the reflected beam will vary as the incident beam shifts on the sample.

Thus, it was predicted that the machine lines should cause reflection to be distorted

radially, and thus the algorithm should register this sample as anisotropic.

Figure 4.5: Image showing the polished aluminum sample used for this study. The
sample is highly specular, as one can observe the reflection of the ceiling tiles on the
sample. Additionally, the sample contains machine lining, as shown by the series of
circular lines on the aluminum.

4.4.4 Solar Panel

Figure 4.6 shows an image of the solar panel material. The solar panel is highly

reflective, as one can see partially see the camera used to capture the image in the

picture. When illuminated, the beam was centered upon the sample, which does not

include the green/orange components (in Figure 4.6) upon which the solar panel was

mounted.
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Figure 4.6: Solar panel used in this study. The solar panel is highly reflective, as
one can partially see the camera used to capture this picture. Additionally, looking
closely, one can observe a series of horizontal grid lines across the sample, which serve
as conductors, as well as a series of elliptical scratches/marks on the panel.

The vertical grid lines in Figure (4.6) are conductive elements that run across the

entire solar panel. These conductive elements are each about 1 mm wide. When

the sample was illuminated, it was rotated 90◦ so that these “vertical” lines were

actually horizontal. Another key aspect of the material is that there is a clear, glossy

coating for the sample, and a layer beneath the coating that provides the overall

black color of the sample. Overall, the surface is highly specular, as one can see their

reflection in the sample. Beyond this, the sample appears to have a series of elliptical

scratches/marks on the surface. The combination of the grid lines and these scratches,

indicates that the solar panel surface should be highly anisotropic, perhaps more so

than the polished aluminum sample. Thus, it was predicted that the algorithm should

register this sample as highly anisotropic.

4.4.5 Metal Mesh

The metal mesh material was the final sample analyzed in this study. Figure 4.7

shows an image of the metal mesh along with the mount used to rotate the sample.

The sample is a grid like metal that is highly transmissive, as one can see the table (on
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which the sample was placed) through the sample. It was predicted that this sample

should be registered as anisotropic, as the series of grid lines should cause reflected

light to have a directional focus, rather than creating an isotropically reflected beam.

Figure 4.7: Image of the metal mesh material used to generate BRDF data. The
mesh is highly transmissive and the series of grid lines should likely cause anisotropic
reflection.

4.4.6 Summary

Table 4.1 summarizes all of the predictions for each of the materials based on

visual inspection.

Table 4.1: Table summarizing predictions of degree of isotropy.

Material Prediction
Lab Mirror Isotropic
Kapton Leans Isotropic
Polished Aluminum Anisotropic
Solar Panel Highly Anisotropic
Metal Mesh Anisotropic

4.5 Lab Mirror Measurements

This section details the measurements taken of the Lab Mirror at θi=20◦,40◦, and

60◦ respectively, and discusses the results of the algorithm applied to this data set.
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It should be noted that the uncertainty in alignment for this data set was 0.2◦.

4.5.1 20◦ Measurements

The plot in Figure 4.8 shows the lab mirror sample at θi=20◦ in scatter coordinate

space. The plot compares, at first glance, well to the simulated isotropic data where

σg was small (< 0.01), as the simulated data also generated a “small circle” for the

contour plots. Figure 4.8 also has some of the “white space” mentioned in section 2 of

this chapter, which is due to the fixed spatial extent translation in φs with increasing

θs.

Figure 4.8: Contour plot (and a zoomed in plot) of the BRDF of the lab mirror
illuminated at θi=20◦ in scatter coordinate space. The mirror appears to be highly
specular and isotropic at first glance. This is because the sample appears very similar
to the simulated data generated in scatter space, where a “small circle” was generated
by the contour plots.

Converting this plot to direction cosine space (Figure 4.9), one can observe that

the mirror sample continues to compare well to the simulated isotropic data. As noted

with the signature beam, there is some noise present in the set-up, which makes for a

not perfectly Gaussian beam signature, and some of the noise present in Figure 4.9,

especially looking at the outermost contour. Overall, the lab mirror appears to consist

of the neat series of similar eccentricity contours found in the simulated isotropic and

beam signature data. As a note, the BRDF data has been converted to a relative

scale (i.e. divided by the maximum value), and data has been narrowed down to two
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orders of magnitude below the peak. The contours of each plot are set to occur in

0.5 increments on the log scale. This was done for each of the measurements for each

material.

Figure 4.9: Plot of the lab mirror in direction cosine space for 20◦. While the out-
ermost contour is somewhat asymmetric, the plot appears to consist of ellipses of
similar eccentricity, comparing well to the simulated isotropic and beam signature
data.

Pulling the data for the inner and outermost contours of the lab mirror (Table

4.2), one can observe that the eccentricity is very similar (0.81 vs 0.80). Only these

two contours are reported as some of the materials had quite a few (some up to 20)

contours, and it was found that the innermost and outermost contours highlighted

best how the material deviates from the baselines. These contour measurements are

already less eccentric than the baseline e=0.73 (which accounts for noise, as a perfectly

Gaussian beam should be e=1) reported for the beam signature, favoring a label of

isotropy for this material.

53



www.manaraa.com

Table 4.2: The eccentricity (Ecc.) of the inner and outer contours is of very similar
eccentricity. This consistency in eccentricity is most similar to what was observed
for the simulated data, with a lower eccentricity than the baseline measurement. In
terms of the center x and y positions, the measurements are exactly the same for the
x coordinate, shifted only slightly in y. Thus, this material so far exhibits the most
consistency, similar to the simulated data.

Material Angle Ecc. Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Lab Mirror (Outer) 20 0.81 70.66 57.43 63.13 134.43 111.04
Lab Mirror (Inner) 20 0.80 38.56 30.82 34.42 134.43 111.70

The table below (Table 4.3) further explores the characteristics of the 20◦ measure-

ment for the Lab Mirror. The sample continues to match the simulated data, as

the sample is just slightly less symmetric than the baseline measurement (10.21% vs

9.11% for the mean difference in symmetry), and the mean eccentric is less eccentric

than the baseline and standard deviation of eccentricity is lower than the baseline,

again indicating isotropy. As a note, when referring to the mean eccentricity, this is

the measurement of all contours in Figure 4.9, not merely the innermost and outer-

most contours. The x and y center of these contours have also been recorded, and

will be included in Table 4.8 in Section 1.4.

Table 4.3: The Lab Mirror has a mean percentage difference is slightly higher than
that of the baseline set by the beam signature, indicating a strong degree of isotropy.
The mean and standard deviation of the eccentricity are lower than the baselines,
further indicating isotropy.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Lab Mirror 20 1061.55 5.83×10−5 10.21 0.80 0.01 0.02
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4.5.2 40◦ Measurements

Figure 4.10 shows the measurement of the Lab Mirror at θi=40◦ in scatter coor-

dinate space. The peak BRDF value increases here by a factor of 1.25, similar to

how the simulated data saw an increase in BRDF with θi. The sample continues to

“mirror” the simulated isotropic data in scatter coordinate space.

Figure 4.10: Contour plots (full range and zoomed plot) of the lab mirror BRDF in
scatter coordinate space for 40◦. The peak BRDF value here increases by 1.25 from
the 20◦ peak, similar to how the BRDF of the simulated data increased with θi. The
sample continues to “mirror” the simulated isotropic data in scatter coordinate space.

Upon converting this measurement to direction cosine space, one can observe that

the plot (Figure 4.11) appears similar to the 20◦ measurement, although extending a

smaller spatial extent in direction cosine space.

Figure 4.11: Plot of the lab mirror in direction cosine space for 40◦. The plot appears
similar to the 20◦ measurement, other than that it spans a smaller spatial extent in
direction cosine space.

55



www.manaraa.com

Table 4.4 shows the characteristics extracted from Figure 4.11 for the innermost and

outermost contours. While the eccentricity varies slightly more between the inner

and outer contours, the 40◦ measurement reports near-circular contours (much less

eccentric than the baseline measurements) in comparison to the 20◦, which indicates

a high degree of isotropy. As observed in Figure 4.11, the diameter is smaller in

direction cosine space than the 20◦, although the semi-major axis and semi-minor

axis are larger. The difference in diameter for the 40◦ compared to the 20◦ data

(even when scaled) denotes that either this material is not fully isotropic, or that this

diameter metric has some uncertainty not captured by the simulated data set.

Table 4.4: The inner and outer contours are nearly circular here (eccentricity (ecc.)
close to 1), although there is slightly more variation between the inner and outer
contour than the 20◦ measurement. Though the diameter is smaller, the semi-major
axis is actually larger than 20◦ measurement. When scaled, the diameters vary greatly
(for the outer contour) between the 20◦ and 40◦ measurements, which is a mark
against labeling this material isotropic.

Material Angle Ecc. Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Lab Mirror (Outer) 40 0.97 94.60 91.52 29.51 135.67 113.00
Lab Mirror (Inner) 40 0.95 36.09 34.28 35.12 133.37 108.50

The symmetry metric for 40◦ “redeems” this material as more isotropic (shown

in Table 4.5), as the percentage differences for symmetry decrease for the mean,

maximum and minimum. Part of this decrease in asymmetry is likely due to a smaller

range in φs, as the mean symmetry reported here is actually lower than the baseline for

the beam signature. The standard deviation in eccentricity for all contours remains

the same as the 20◦ measurement (again lower than the baseline), another point in

isotropy’s favor. The mean eccentricity is also lower than the baseline of 0.73. The

FWHM is close to half of the 20◦ measurement, which is expected due to the smaller

range in φs.
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Table 4.5: The symmetry increases at 40◦, due to the lower percentage differences
reported for all categories (max, min and mean). Part of this is likely due to the
smaller range in φs, which likely also caused a decrease by about half for the FWHM.
The standard deviation in eccentricity remains the same as the 20◦ measurement,
despite the mean eccentricity becoming near circular.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Lab Mirror 40 619.64 7.13×10−6 7.55 0.96 0.01 0.009

4.5.3 60◦ Measurements

Figure 4.12 shows the 60◦ measurement in scatter coordinate space. The peak

BRDF value continues to increase for increasing θi. The BRDF increases by a factor

of 1.6, continuing the trend of increasing BRDF with increasing θi.

Figure 4.12: Contour plots (full plot and zoomed) of the lab mirror BRDF in scatter
coordinate space for 60◦. The peak BRDF value increases by a factor of 1.6 from the
40◦ measurement, continuing the trend of increasing BRDF with increasing θi.

Figure 4.13 shows a zoomed in version of Figure 4.12 in direction cosine space. The

plot appears to narrow in ∆β in comparison to lower θi measurements for the mirror.
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Figure 4.13: Plot of the lab mirror in direction cosine space for 60◦. The plot narrows
in ∆β in comparison to the 20◦ and 40◦ measurements.

Table 4.6 shows how the inner and outer contours of the direction cosine plot

compare to the lower θi measurements. The eccentricity of both contours increases

for both the inner and outer contour, recording measures of eccentricity slightly higher

than the baseline. Additionally, the scaled semi-major axis and diameter increase from

the 40◦ measurement. While scaled diameter is greater, it still differs significantly

from the 20◦ measurement, and thus, the diameter parameter continues to indicate

either that the material is not fully isotropic, or that there is some uncertainty not

being captured in the diameter metric. As with the other lab mirror data, the center

x and y coordinates continue to be consistent between the inner and outer contour.

Table 4.6: The scaled measurements (diameter, semi-major axis) are greater than
those of the 40◦ measurements. The increase in scaled diameter does not match the
20◦ measurement closely though, serving as another ”mark” against material isotropy.
However, the eccentricity and center x and y positions between the inner and outer
contours continue to be consistent, which is a ”point” for isotropy.

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Lab Mirror (Outer) 60 0.69 130.13 89.24 40.16 134.98 111.05
Lab Mirror (Inner) 60 0.71 39.66 28.35 33.44 134.93 109.00

Table 4.7 shows how the asymmetry increases slightly for the 60◦ measurement.
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his is likely because the measurement becomes stretched in ∆α somewhat, which

corresponds to decreased symmetry in φs. However, this percentage difference is still

rather comparable to the baseline (just slightly higher than the baseline of 9.11%).

The standard deviation of eccentricity remains low (0.01), but the eccentricity now

exceeds the baseline. However, the FWHM decreases by a factor of 3 (instead of

2) for the 60◦ compared to the 40◦ measurement. This is probably also due to the

stretching in ∆α.

Table 4.7: The symmetry decreases for the 60◦ data compared to the 40◦. This is
likely because Figure 4.13 shows the plot stretching in ∆α. This is also probably
why the FWHM decreases by a factor of 3 instead of the expected 2. However, the
standard deviation of eccentricity continues to remain low (0.01), which is a mark of
isotropy.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Lab Mirror 60 973.69 7.64×10−6 10.42 0.70 0.01 0.003

4.5.4 Summary of Mirror Data

Table 4.8 summarizes the data captured for the Lab Mirror. The symmetry is

relatively high for this material, as the mean percentage difference is just above the

9.11% measured for the beam signature, indicating isotropy. The scaled diameter’s

standard deviation well exceeds the standard deviation of the baseline, which was set

to 3.35, which indicates anisotropy. Harvey theorized that diameter should remain

constant with increasing θi in direction cosine space. However, perhaps the reason why

the diameter, even when scaled appropriately, did not remain constant for this sample

(while remaining constant for the simulated data) is more so due to the contours

picked by Python not being consistent rather than actual asymmetry in the data. The

contour plots in direction cosine space only include the peak BRDF and any values two

orders of magnitude below the peak. The cutoff metric could vary somewhat between
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increasing θi, as the peak BRDF values are also changing. Thus, this likely makes

measuring the diameter not the most accurate parameter for measuring isotropy.

Another possible explanation for this is that there can be uncertainties associated

with aligning the sample properly. For example, if the beam is not exactly centered

on the sample, the spot size can elongate as θi increases, causing the diameter of the

reflected beam to change as well. As a result of these two possible explanations, in

the analysis section of this chapter, the diameter metric has been weighted lower in

determining the overall isotropy and ranking of materials.

Despite the difference between the diameter baseline and the lab mirror standard

devation, the lab mirror measured up fairly well against the rest of the baselines set in

Chapter 3. When scaled, the FWHM is the most consistent out of all of the measured

materials with a standard deviation of 0.005, just slightly higher than the baseline of

0.002. The x and y center coordinates also have very low standard deviations (the

standard deviations are actually both lower than the baseline standard deviation of

3.23), which points further towards isotropy. These x and y centers are measurements

of the centers of each contour measured (not just the innermost and outermost con-

tours of each θi dataset in direction cosine space). The mean overall eccentricity is

higher than the baseline of 0.73, although the standard deviation is somewhat higher

than the baseline of 0.04. However, for each θi, the standard deviation remained

consistently at 0.01 for the eccentricity, which also strongly indicates isotropy. The

only point against this material being fully isotropic is the scaled diameter column,

which, as noted previously, is likely a faulty metric. Otherwise, the algorithm iden-

tified the material as isotropic, matching up with the previous expectation that a

smooth surface with no visible scratches or marks should reflect light isotropically.
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Table 4.8: This material overall rates as leaning isotropic. This is because the stan-
dard deviations reported for the FWHM, eccentricity, x and y centers compare well
to the baselines set by beam signature and simulated isotropic data. The symmetry
is also high here as it is barely less symmetric than the beam signature data, which
is the baseline. The only mark against this material is that the scaled diameter has
a relatively high standard deviation.

Material Mean Scaled Scaled X Y Eccentricity Classification
Symmetry Diameter FWHM Center Center
(% dif) (Pixels) (∆α) (Pixels) (Pixels)

Lab Mirror 9.39 44.27 0.016 134.42 110.12 0.81 Isotropic
± 1.60 ± 17.18 ± 0.005 ± 1.51 ± 1.60 ± 0.10

4.6 Kapton

This section details the measurements collected for the Kapton material at θi=20◦,

40◦ and 60◦ respectively, and discusses the results of the algorithm applied to this

dataset. The alignment uncertainty for this sample was 0.2◦.

4.6.1 20◦ Measurements

Figure 4.14 shows the BRDF data in scatter coordinate space for θi=20◦. As

predicted, the Kapton is significantly less specular than the mirror sample, with a

peak BRDF value 140 times less than that of the mirror sample.

Figure 4.14: Plots (full plot and zoomed) of Kapton BRDF in scatter coordinate
space for θi=20◦. The peak BRDF value captured is 140 smaller than that of the
mirror sample, meaning that Kapton is less reflective. The reflected beam also spans
a much wider range in scatter coordinate space than the mirror sample, stretched
unequally in θs and φs indicating possible anisotropy.
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The reflected beam also spans a much wider range in scatter coordinate space,

also meaning that the surface is less specular. However, the beam is also stretched

unequally in θs and φs, which is a possible indicator of anisotropy. Figure 4.15 shows

a zoomed in plot of the BRDF in direction cosine space, and further highlights this

anisotropy. The white spaces in Figure 4.15 are likely just low signal, as any BRDF

data two orders of magnitude below the peak does not appear in the plot.

Figure 4.15: Plot of the relative BRDF of Kapton in direction cosine space. The
zoomed in plot further illustrated anisotropy, as it is asymmetric in this space.

Table 4.9 captures the features extracted from the direction cosine plot. This table

shows that Kapton is more eccentric than the mirror, and spans a much wider range

in ∆β, even though the mirror and Kapton were not plotted on the same scale. The

x and y center points also appear to shift around more than the mirror center points.

As a note, the direction cosine space plots were not plotted on the same scale as the

mirror plots in order to use the ellipse fitting algorithm. Because the mirror data

is more specular, the peak was smaller, and thus it had to be plotted on a smaller

scale than the Kapton data in direction cosine space. Table 4.10 provides a better

comparison point by looking at relative symmetry, standard deviation in eccentricity

and the FWHM.
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Table 4.9: Summary of the measurements of Kapton at θi=20◦. The Kapton is much
more eccentric than the mirror, spanning a much wider range in ∆β.

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Kapton (Outer) 20 0.25 159.06 39.79 60.98 131.11 110.61
Kapton (Inner) 20 0.15 77.25 11.70 29.73 138.27 110.34

Table 4.10: Summary of features extracted for Kapton at θi=20◦. Using step 3 of the
algorithm, Kapton is found to be less symmetric about φs than the mirror; this is not
surprising given the stretching in scatter space. The mean eccentricity and standard
deviation is higher than that of the mirror, indicating a higher degree of anisotropy.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Kapton 20 36745.90 6.62×10−6 318.44 0.19 0.06 0.029

Table 4.10 shows that Kapton is significantly less symmetric in φs than the mirror

data. This is likely due to the fact that the Kapton data is stretched more in scatter

space. The mean and standard deviation in the eccentricity of the Kapton is higher

than the mirror data at θi=20◦, indicating anisotropy.

4.6.2 40◦ Measurements

Figure 4.16 shows the 40◦ measurement of BRDF for Kapton in scatter coordinate

space. The plot also has a higher peak BRDF value (1.4 times larger value), and

appears to be stretched further in θs than the 20◦ Kapton data.
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Figure 4.16: Plots (full plot and zoomed) of Kapton BRDF data for θi=40◦ in scatter
coordinate space. The plot has a higher peak BRDF value than that of the 20◦

measurement, and appears to be stretched more in θs

Figure 4.17 shows the Kapton data in direction cosine space. It appears to closely

resemble Figure 4.15.

Figure 4.17: Plot of Kapton BRDF data for θi=40◦ in direction cosine space. The
plot appears to closely resemble the 20◦ plot.

Table 4.11 summarizes some of the characteristics of inner and outer contours for the

40◦ measurement in direction cosine space.
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Table 4.11: Measurements collected for the inner and outer contours at 40◦. The
40◦ measurements extend a smaller space in direction cosine space as evidenced by
the semi-major and semi-minor axis and diameter measurements (unscaled). When
scaled, the semi-major axis is larger than the 20◦ measurement, as the outer contour
is much more eccentric at 40◦. The center x and center y coordinates for both the
inner and outer contours also shifted somewhat compared to the 20◦ measurements.

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Kapton (Outer) 40 0.14 164.60 22.50 36.39 141.01 108.31
Kapton (Inner) 40 0.21 37.15 7.88 16.13 132.47 109.04

The 40◦ measurements exhibit a higher degree of eccentricity (for the outer con-

tour, less so for the inner contour). When the ellipse dimensions are scaled by 1.23,

the semi-major axis is larger than the 20◦ measurement, however, all other dimensions

remain smaller than the 20◦ measurements. The center x and y coordinates (for both

the inner and outer contours) also shifted somewhat from the 20◦ measurements. Ta-

ble 4.12 shows how the relative symmetry in φs changed for 40◦, as well as the overall

eccentricity measurements.

Table 4.12: Summary of symmetry data collected for 40◦. The 40◦ measurements are
less symmetric in φs despite extending a smaller range in φs. The 40◦ measurements
vary less eccentricity-wise than the 20◦ measurements, however the outer contour is
much more eccentric, indicating anisotropy. The FWHM is essentially half that of
the 20◦ measurement, which is likely due to the 40◦ measurements extending half of
the range in φs.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Kapton 40 188102.70 2.25×10−5 353.77 0.15 0.04 0.0096

The 40◦ measurements are less symmetric in φs than the 20◦ measurements, de-

spite spanning half the range in φs. However, the FWHM is half of the measured

FWHM for 20◦, and this is likely due to the smaller range in φs translated to ∆α. The
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40◦ measurement also has a lower standard deviation in eccentricity than that of the

20◦ measurement, but the outer contour is more eccentric than the 20◦ measurement,

indicating anisotropy.

4.6.3 60◦ Measurements

Figure 4.18 shows the Kapton BRDF for θi=60◦ in scatter coordinate space. The

peak BRDF value increases significantly here, increasing by a factor of 6.25 from the

40◦ measurement.

Figure 4.18: Plots (full plot and zoomed) of Kapton BRDF data for θi=60◦ in scatter
coordinate space. The peak BRDF value increased by a factor of 6.25 compared to
the 40◦ plot.

When transformed to direction cosine space and zoomed in, the 60◦ plot appears

to be more centered about (0,0) in direction cosine space compared to the 20◦ and 40◦

plots. The plot appears to have more white space than the previous direction cosine

plots for Kapton. This is likely due to the fact that the BRDF is higher here at the

specular peak than at the lower θi, and so the white space is BRDFs lower than 2

orders of magnitude below the peak, so this data is now cut from the plot, while it

was included in previous plots.
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Figure 4.19: Plot of Kapton BRDF data for θi=60◦ in direction cosine space. The
plot appears to be centered more about (0,0) in direction cosine space compared to
the 20◦ and 40◦ plots.

Table 4.13 summarizes the data captured for the inner and outer contours at 60◦.

The 60◦ data is more eccentric than the previous θi measurements. This is because

the semi-major axis measurement is much larger in comparison to the 20◦ and 40◦

measurements. Additionally, the outer contour is shifted somewhat in x. Overall, the

eccentricity varies less between the inner and outer contours compared to the lower θi

measurements (but a higher overall eccentricity). Despite this, the 60◦ measurements

exhibit a lower degree of symmetry about φs, as shown in Table 4.14.

Table 4.13: Measurements of the inner and outer contours of the 60◦ plot in direction
cosine space. The inner and outer contours are very similar in eccentricity, however,
both are more eccentric than the 20◦ and 40◦ data. However, the semi-major axis is
much larger when scaled than the lower θi measurements, as the plot is much more
eccentric. The outer contour is also shifted somewhat in x compared to the previous
measurements.

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Kapton (Outer) 60 0.13 288.30 36.92 73.06 122.38 110.13
Kapton (Inner) 60 0.12 107.84 13.01 36.90 135.09 108.98
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Table 4.14: Summary of data regarding the symmetry about φs for 60◦ as well as the
standard deviation in eccentricity as well as the FWHM. The data is less symmetric
than the previous θi measurements, and the FWHM is less than half of that of the
40◦ measurement, while varying slightly more in eccentricity.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Kapton 60 424901.90 1.24×10−4 759.28 0.15 0.05 0.0024

The 60◦ measurements also exhibit a FWHM that is less than half of that of the

40◦ measurement, despite the difference in φs only being half. The mean eccentricity

and standard deviation is also slightly higher, indicating that the 60◦ measurement

is more anisotropic.

4.6.4 Summary of Kapton Data

Overall, the Kapton exihibits little similarity to the mirror and simulated data,

and appears to be quite anisotropic. The mean percentage difference in symmetry

denotes that this sample is more than 50 times more asymmetric about φs, strongly

favoring anisotropy. However, the standard deviation in the scaled diameter, as shown

in Table 4.15, is of the same order of magnitude as the standard deviation for the lab

mirror. This is likely again due more so to either alignment error or the inconsistency

of contour levels, specifically the outermost contour, being measured. The peak BRDF

values at each θi increased with θi, meaning that the contours were not necessarily

set to the same levels, when taking into account the peak BRDF value and 2 orders

of magnitude below. However, both the lab mirror and the Kapton samples would

register as anisotropic via this metric, when compared to the baseline. The standard

deviation in the FWHM is also high compared to the baseline, and the deviation

is on the same order of magnitude as the mean FWHM, meaning that the FWHM

varied significantly even when scaled for each θi. This is another mark in anisotropy’s

68



www.manaraa.com

favor. The deviations in x and y centers (of each contour, not just the inner and

outer contours) were also above the baseline of 3.23, again indicating anisotropy.

Finally, the mean eccentricity was significantly lower than the baseline eccentricity

of 0.73, marking anisotropy. However, the standard deviation in eccentricity was

actually lower than the lab mirror standard deviation and just above the baseline

deviation, which indicates some degree of isotropy. With this, the sample has been

labeled as moderately anisotropic, as shown in Table 4.15. In this case, the the

algorithm identified the sample as being slightly more anisotropic than expected.

The sample was observed to have a few scratches, which would cause some anisotropic

reflection. It is possible that the beam was centered to illuminate one of these regions.

Another possibility is that the Kapton sample was not laid completely flat, causing

the reflection to appear more “anisotropic” than predicted.

Table 4.15: Kapton is more anisotropic than the mirror sample, as it well exceeds
the baselines in mean symmetry and standard deviations in scaled FWHM, x and y
center, scaled diameter. It also exceeds the baseline for mean eccentricity, while the
standard deviation in eccentricity is actually less than that of the mirror. As a result,
the sample has been labeled as moderately anisotropic.

Material Mean Scaled Scaled X Y Eccentricity Classification
Symmetry Diameter FWHM Center Center
(% dif) (Pixels) (∆α) (Pixels) (Pixels)

Kapton 477.16 56.78 0.019 ± 0.01 136.49 107.36 0.16 Moderately
± 244.96 ± 18.74 ± 8.07 ± 7.56 ± 0.05 Anisotropic

4.7 Polished Aluminum

This section details the measurements taken of the polished aluminum sample

at 20◦, 40◦ and 60◦ respectively, and shows the results of the algorithm applied the

polished aluminum dataset. The alignment uncertainty was 0.2◦ for this sample.
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4.7.1 20◦ Measurements

Compared to the samples previously discussed, the polished aluminum, at first

glance, exhibits the most characteristics in common with the Kapton sample. This is

evidenced by the plot shown in Figure 4.20 in scatter coordinate space for a θi=20◦.

The sample exhibits a specular peak, centered at θi=θs and φs=π radians. However,

the polished aluminum is much more specular and reflective, as its peak BRDF value

is twenty times that of the Kapton sample. This makes sense given that the Kapton

is semi-transparent, and the polished aluminum is more mirror-like.

Figure 4.20: Plots (full plot and zoomed) showing the polished aluminum sample in
scatter coordinate space for a θi of 20◦. The sample has a peak BRDF that is twenty
times that of the Kapton sample, although the BRDF appears to have a similar shape
in scatter coordinate space.

As with the other samples, the polished aluminum BRDF data was converted to

direction cosine space, and the peak of the data (plus two orders of magnitude below

the peak) was zoomed in upon. Figure 4.21 shows the plot of the data in direction

cosine space.
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Figure 4.21: Plot showing the polished aluminum sample in direction cosine space.
The sample spans a wider range in direction cosine space than the Kapton sample,
but is stretched in ∆β compared to ∆α, indicating material anisotropy.

From Figure 4.21, it is evident that the plot is stretched in ∆β compared to ∆α,

indicating some degree of material anisotropy. Another characteristic is that the plot

spans a wider range in direction cosine space than the Kapton sample. To investigate

this further, the parameters of the inner and outer contours of the sample in direction

cosine space were pulled and shown in Table 4.16.

Table 4.16: Compared to the Kapton measurements at 20◦, the polished aluminum
exhibits a lower eccentricity, while also larger semi-major, semi-minor axes and di-
ameters for the outer contour. The inner contour is much smaller in comparison, and
is shifted significantly from the center of the outer contour. The scaled columns are
scaled by 1 here.

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Polished 20 0.35 311.71 109.87 174.06 119.37 171.01
Aluminum
(Outer)
Polished 20 0.46 18.18 8.38 11.99 135.22 109.66
Aluminum
(Inner)

Table 4.16 differs from the Kapton sample at 20◦ in that the sample spans a much

wider range in pixel coordinate space (higher semi-major and semi-minor axis and
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diameter for the outer contour). The inner most contour is much narrower, indicating

that the reflection is more spread out in scatter space instead of narrowly concentrated

at the peak. However, the eccentricity is quite high here (compared to the baseline),

indicating anisotropy. Table 4.17 below discusses the symmetry of the sample as well

as the consistency of eccentricity and FWHM.

Table 4.17: Compared to the Kapton measurements at 20◦, the polished aluminum
exhibits a lower degree of symmetry in φs (looking at the max, min and mean symme-
try columns) as the percentage differences are all higher for polished aluminum. The
polished aluminum is overall less eccentric, and exhibits a similar standard deviation
and FWHM to the Kapton.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Polished Aluminum 20 116529.90 3.26×10−5 532.83 0.41 0.06 0.025

Table 4.17 shows that the polished aluminum sample is less symmetric in φs than

the Kapton when comparing the mean, maximum and minimum percentage differ-

ences, indicating anisotropy. The standard deviation of eccentricity for all measured

contours (though less eccentric than the Kapton) is comparable to the Kapton sample,

along with the FWHM. The mean eccentricity of all contours is high is comparison

to the baseline, favoring anisotropy.

4.7.2 40◦ Measurements

Figure 4.22 shows the 40◦ measurements of the polished aluminum sample in

scatter coordinate space. The peak BRDF value also increases by a factor of 1.2,

which is slightly less than the factor the Kapton increased by, but similar to the

factor that the mirror sample increased by. This is likely due to the fact that both

samples are made out of aluminum, and thus the index of refraction is similar, creating

a similar increase as θi changes.
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Figure 4.22: Contour Plots (full plot and zoomed) of the BRDF of the polished
aluminum sample illuminated at θi=40◦ in scatter coordinate space. The peak BRDF
value also increases by a factor of 1.2 (smaller than the increase for the Kapton at
40◦, but similar the increase for the mirror sample).

Figure 4.23 shows how the 40◦ measurement compares to the 20◦ measurement

in direction cosine space. At first glance, the plot appears to be a “shrunken” down

version of the 20◦ measurement.

Figure 4.23: Plot showing the polished aluminum sample at 40◦ in direction cosine
space. The plot appears to be a “shrunken” down version spatially of Figure 4.21.

Table 4.18 shows the characteristics of the inner and outer contours of the sample

at 40◦, verifying that the sample does indeed span a smaller range in direction cosine

space (for the unscaled measurements). However, when the sample is scaled, the

semi-major axis becomes larger than the 20◦ measurement, while all other parameters

(semi-minor axis and diameter) remained smaller when scaled. As a result, the outer

contour of the 40◦ measurement is much more eccentric than that of the 20◦, indicating

increased anisotropy. Another point of interest is that inner contour shrinks as well
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(even when scaled) from the 20◦ measurement, while the center x and y coordinates

remain more consistent.

Table 4.18: The outer contour of the 40◦ measurement is much more eccentric than
that of the 20◦ measurement. When scaled, the semi-major axis measurement is
larger, while the diameter and semi-minor axis remain smaller. The scaled inner
contour also becomes smaller than that of the 20◦ measurement, while the center
x and y measurements are more consistent between the inner and outer contour
compared to the 20◦ data.

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Polished 40 0.14 322.22 43.25 98.52 117.49 107.72
Aluminum
(Outer)
Polished 40 0.49 16.90 8.25 11.28 130.95 108.56
Aluminum
(Inner)

Given the higher eccentricity of the outer contour (and the greater difference in ec-

centricity of the inner and contours), it was suspected that the 40◦ sample would have

a higher degree of asymmetry in φs. Table 4.19 shows that the 40◦ is indeed slightly

less symmetric in φs. However, interestingly the high standard deviation (paired with

the high mean eccentricity of all contours) of eccentricity (0.15) demarcates strong

anisotropy for this sample compared to the 20◦ data. The mean eccentricity increases

as expected from the 20◦ data. The FWHM is half that of the 20◦ measurement, a

result expected for a more isotropic material.
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Table 4.19: The asymmetry for the 40◦ measurement is slightly higher than that of
the 20◦. Noticeably, the material exhibits a high standard deviation of eccentricity,
which demarcates strong anisotropy. The FWHM is half that of the 20◦ measurement,
which is a result expected for a more isotropic material.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Polished Aluminum 40 145605.80 6.96×10−4 535.03 0.35 0.15 0.01

4.7.3 60◦ Measurements

Figure 4.24 shows the polished aluminum BRDF captured at θi=60◦ in scatter

coordinate space. The peak BRDF value here increased by a factor of 3.3 from

the 40◦, which differs from the Kapton data, where the peak BRDF value increased

by 6.25, and from the mirror data where it increased by 1.6 at 60◦ from the 40◦

measurement.

Figure 4.24: Plots (full plot and zoomed) showing the polished aluminum sample illu-
minated at θi=60◦ in scatter coordinate space. The peak BRDF value also increases
by a factor of 3.3, which differs from the Kapton and mirror data where the peak
BRDF value increased by 6.25 and 1.6 respectively 60◦ from the 40◦ measurement.

Figure 4.24 also appears to have a sharper peak than the previous measurements,

and this peak is slightly shifted off of θi=θs. This may be due to an alignment issue, as

the uncertainty in alignment is 0.2◦. There appears to be a tail to the data. Zooming

in on this peak in direction cosine space (Figure 4.25), one can observe that this is

not the case, and the plot maintains the same elliptical shape stretched unequally in
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∆α and ∆β. However, the plot in direction cosine space does span a lower spatial

range than the previous polished aluminum measurements.

Figure 4.25: Plot showing the polished aluminum sample in direction cosine space for
60◦. The measurement maintain the same asymmetric stretching in direction cosine
space, but spans a lower spatial extent than the data at lower θi.

Table 4.20 shows characteristics of the inner and outer contours of Figure 4.25.

The inner contour is significantly less eccentric in comparison to the 40◦ inner con-

tour. When scaled by 1.86, each of the contours is also smaller than that of the 40◦,

meaning that the plot occupies a much smaller region in direction cosine space. The

BRDF becomes more narrowly focused at 60◦. There is also less variation in the

x and y center points. However, since the eccentricity between the inner and outer

contour varies significantly, the BRDF has become more directionally focused in ∆β

as opposed to ∆α, which one can observe by looking at Figure 4.25. Such directional

focusing is an indicator of anisotropy.
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Table 4.20: The inner contour is significantly less eccentric compared to the 40◦ case.
This means that the difference between the inner and outer contours is also greater.
This indicates that the BRDF has skewed significantly in the ∆β direction compared
to previous measurements of the polished aluminum. Likely this means that at higher
θi, directional reflection strongly favors the x direction as opposed to the y direction.

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Polished 60 0.28 139.35 39.17 65.53 149.92 113.14
Aluminum
(Outer)
Polished 60 0.79 10.53 8.28 9.15 135.58 108.84
Aluminum
(Inner)

Table 4.21 denotes the symmetry of this material at 60◦, as well the standard

deviation in eccentricity (which was already noted to be high looking at the inner

and outer contours), and the FWHM. The eccentricity has a standard deviation of

0.23, which is the highest standard deviation observed so far. However, the mean

eccentricity decreased from the previous measurements, which was unexpected. The

measured eccentricity is still higher than the baseline, indicating anisotropy. It is

possible that the alignment issue noted in Figure 4.24 may be causing the beam

to become less eccentric, especially if the same spot is not being illuminated. The

direction cosine plot is found to be more symmetric about φs, however, this is likely

due to the smaller extent of the 60◦ measurement in φs, as well as the strong directional

skewing (observed in ∆β) towards the θs. The FWHM is less than half that of the

40◦ measurement, which is further evidence of directional skewing.

77



www.manaraa.com

Table 4.21: The data below indicates strong directional skewing at 60◦. This is
because of the very high standard deviation in eccentricity and the FWHM which
is less than half of the 40◦ measurement. The symmetry in φs also suggests this, as
there is significantly less asymmetry for 60◦ that cannot be merely accounted for by
the smaller range in φs at 60◦.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Polished Aluminum 60 62875.35 2.75×10−5 195.10 0.63 0.23 0.004

4.7.4 Summary of Polished Aluminum Data

Referring to Table 4.22, the polished aluminum has a higher standard deviation

for all categories with the exception of the mean symmetry and FWHM columns than

the Kapton sample. The diameter, even when scaled, has a standard deviation that

is half of the mean. With the simulated isotropic sample, this standard deviation was

2% of the mean. Ignoring the lower standard deviation for the mean symmetry, the

percentage difference in symmetry (421% vs 477%) was still significant and compara-

ble to the asymmetry in Kapton. Arguably, there was stronger directional skewing in

the polished aluminum, which is evidenced by the high standard deviation of eccen-

tricity, despite actually registering a mean eccentricity that was lower. Another point

favoring anisotropy of this material is the standard deviations of the x and y centers

which are both at least six times that of the baseline standard deviation. Thus, the

polished aluminum sample rates as more anisotropic than the Kapton sample. This

result matched predictions, as the visible machine lines on the surface caused one to

theorize that this would create anisotropic reflection.
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Table 4.22: The polished aluminum sample is rated as more anisotropic than the
Kapton sample. This is because for nearly all categories (excluding the mean sym-
metry and FWHM), the standard deviation is significantly higher. The standard
deviation for the diameter is half that of the mean, which is significant, compared to
the standard deviation that was 3% of the mean for the simulated isotropic material.
The x and y center (of every contour, not just the inner and outer contours for each
θi) shifts around much more, and the eccentricity has a high standard deviation, in-
dicating strong directional skewing (in x). Despite the polished aluminum reporting
a higher symmetry, the 421% vs the 477% reported for Kapton, is still similar enough
(especially taking into account the standard deviation), that the polished aluminum
renders as more anisotropic than the Kapton sample.

Material Mean Scaled Scaled X Y Eccentricity Classification
Symmetry Diameter FWHM Center Center
(% dif) (Pixels) (∆α) (Pixels) (Pixels)

Polished 420.99 112.70 0.022 134.85 119.97 0.46 Anisotropic
Aluminum ± 195.63 ± 55.64 ± 0.006 ± 48.89 ± 20.13 ± 0.19

4.8 Solar Panel

Measurements of the solar panel were collected at 20◦,40◦, and 60◦, respectively.

The results of these measurements are expounded upon below. The alignment uncer-

tainty for the solar panel data was 0.2◦.

4.8.1 20◦ Measurements

Figure 4.26 shows the extent of the CCD image captured in scatter coordinate

space for a measurement of the solar panel when illuminated at θi=20◦. The solar

panel is less specularthan all of the materials enumerated so far, excepting the Kapton

sample, as it records the second lowest BRDF so far.
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Figure 4.26: Contour plots of the BRDF captured in scatter coordinated space when
illuminated at θi=20◦. There are 2 peaks here, one centered at the specular peak and
another (where the maximum value is located) occurring off of the specular peak at
θs=21.09◦ and φs=181.35◦. The first peak is to the right of the full plot, and the
second peak zoomed in is below the full plot.

Unlike with the previous materials, the solar panel BRDF is split into two peaks,

one located directly at θi=θs and φs=180◦ (Peak 1), and another at θs=21.09◦ and

φs=181.35◦ (Peak 2), where the maximum BRDF value is located. Since the align-

ment uncertainty is 0.2◦, this second peak is most likely not the main specular peak.

These two peaks are likely caused by reflections from the two surfaces on the solar

panel. Since there is both a glossy coating and layer beneath this coating, it is likely

that light is reflecting from both surfaces, which are not parallel to one another and

generating two separate peaks. Upon zooming in on the first peak, there is also a

diffraction pattern about the peak, as shown in Figure 4.27. This diffraction pattern

is likely due to the vertical grid lines mentioned in Section 4.4.4. In scatter coordinate

space, the spacing between each peak extends about 0.1◦ in φs (looking at Figure 4.27.

One can use Fraunhofer diffraction [26] through a rectangular aperture to find the

periodicity of the feature creating the diffraction pattern. This is equation is ∆x=2λ
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z/l. where λ is the wavelength of the HeNe laser, 632.8 nm, z is the distance from

the sample to the CCD of 0.325 m, and l is the aperture width of 1mm. Using these

parameters and converting to angular coordinates, one will calculate a ∆x=0.07◦,

which compares closely to the spacing of roughly 0.1◦ in Figure 4.27. Thus, one can

conclude that the grid lines are causing the diffraction pattern.

Figure 4.27: Zoomed in version of Peak 1 in scatter space. The colorbar here uses a
log scale to show the peak value and data two orders of magnitude below the peak.
By zooming in on the data, one can observe the diffraction pattern created by the
grid lines.

In order to perform data analysis in the direction cosine space and capture relevant

information about eccentricity, semi-major and semi-minor axes and diameter, the

CCD data was split into Peak 1 and Peak 2 data and converted to direction cosine

space, as shown in Figures (4.28)-(4.29).

Figure 4.28: Peak 1 showing the diffraction pattern in direction cosine space.
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Figure 4.29: Peak 2 appears highly asymmetric in this space and highly stretched in
∆β.

In this instance, both Peak 1 and Peak 2 appear highly anisotropic (in comparison

to the simulated isotropic data and the lab mirror). Upon performing data processing

for the 20◦ measurements it was found that the measurements of the outermost and

innermost contours of Peak 1 and Peak 2 varied greatly (see Table 4.23). Peak 1 is

clearly more specular, as the diameter of the BRDF spans a smaller region in direction

cosine space, despite the fact that the peak value occurs at Peak 2.

Table 4.23: Table showing the measurements of the innermost and outermost contours
for both peaks of the solar panel. The 1st peak has a higher eccentricity and spans a
smaller range in direction cosine space than the second peak.

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Solar Panel 20 0.71 45.75 32.52 35.23 132.96 112.37
(Outer Peak 1)
Solar Panel 20 0.76 11.33 8.57 9.77 133.69 108.29
(Inner Peak 1)
Solar Panel 20 0.30 130.94 36.92 53.36 182.59 185.47
(Outer Peak 2)
Solar Panel 20 0.59 33.05 19.42 25.26 212.79 206.08
(Inner Peak 2)

As a note, for the eccentricity measurements of the solar panel, the diffraction
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pattern was not included in measuring the outer and inner contours of Peak 1. (These

measurements are included later). The goal here was to note asymmetries in the main

peaks not including the diffraction pattern. The eccentricity of the Peak 1 is slightly

higher than the baseline for the outer contour, and lower than the baseline for the inner

contour, indicating some degree of isotropy in Peak 1. This is not the case for Peak

2, as the inner and outer contours vary significantly in eccentricity, and are far above

the baseline eccentricity. Peak 2 also shifts around significantly (looking at the X and

Y centers). These measurements indicate a high degree of anisotropy/asymmetry in

Peak 2. Table 4.24 shows how symmetric the solar panel data (including both peaks)

is, along with how the eccentricity changes for all measured contours.

Table 4.24: The symmetry measurement here was collected by folding the entirety of
Figure 4.26 about φs=π radians. The asymmetry for the solar panel is the highest
here out of all of the previously meaured materials. To obtain FWHM, the entirety
of Figure 4.26 was converted to direction cosine space, which is why only the Peak 1
row has a measurement, as this data point is for the entire 20◦ measurement, not just
Peak 1. Peak 1 continues to be much more isotropic, measuring a mean eccentricity
below the baseline (with a standard deviation slightly above the baseline), while the
opposite is the case for Peak 2.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Solar Panel (Peak 1) 20 3210377.20 5.58×10−5 2619.22 0.76 0.06 0.02
Solar Panel (Peak 2) 20 n/a n/a n/a 0.43 0.16 n/a

The symmetry measurements of Table 3.3 are for the entire solar panel plot folded

about φs=π radians (i.e. Figure 4.26 folded about this point). Thus, there is no data

for the Peak 2 row, as the symmetry of the entire plot about φs was represented

by the Peak 1 row. The mean and standard deviation of eccentricities are derived

from measurements of all of the contours for both Peak 1 and Peak 2. This again

does not include the diffraction pattern for Peak 1 (the diffraction pattern will be

taken into account in Section 7.4). Peak 2 is more anisotropic, as both the mean and
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standard deviation of eccentricity well exceed the baselines. Peak 1 renders as more

isotropic, with a mean eccentricity below the baseline, and standard deviation just

above the baseline. The differences in isotropy for the two peaks are likely due to

the construction of the solar panel itself. Peak 2, which is likley caused by the top

glass cover has been glued to the solar cell, and thus is not completely flat, rendering

it more anisotropic. Peak 1 is likely made out of uniform metals, rendering it more

isotropic, despite the conductive grid lines producing a diffraction pattern. As for the

FWHM, it was measured by plotting all of the solar panel data against ∆α, and thus

there is no data for row two of the table.

4.8.2 40◦ Measurements

At first glance, the 40◦ BRDF measurements (Figure 4.30) appear to be similar

to the measurements at 20◦ as shown in Figure 4.26. However, the peak value of the

BRDF is more than two times larger (140,000 vs 64,000), when looking at Peak 2,

where the peak value occurred. This increase is the highest rate of increase in BRDF

compared to the other materials with respect to θi.
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Figure 4.30: Contour plots illustrating the BRDF of the solar panel illuminated at
θi=40◦. The peak BRDF measurement is higher than that of the 20◦ measurement,
increasing by a factor of approximately 2. The first plot is the full plot. To the right
in a zoom of the Peak 1, and below is a zoom of Peak 2.

Despite these differences, the 40◦ measurement still captures two peaks, one cen-

tered directly at the specular peak (Peak 1) and another centered off at θs=41.22◦

and φs=180.66◦. Peak 1 still has a diffraction pattern that can be observed when one

hones in on Peak 1, as shown in Figure (4.31) below, when both peaks are converted

to direction cosine space (Figures 4.31-4.32).

Figure 4.31: Peak 1 continues to have a diffraction pattern centered about a somewhat
symmetric looking peak.
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Figure 4.32: Peak 2 continues to stretch significantly in ∆β compared to ∆α.

Comparing Figures 4.31-4.32 to Figures 4.28-4.29, the Peak 1 for both the 20 and

40◦ measurements appears relatively similar. However, Peak 2 for the 40◦ measure-

ment appears to extend a much smaller range in direction cosine space than that of

the 20◦ Peak 2 measurement, when plotted on the same scale. It also appears to

stretch more in ∆β, compared to Figure (4.29). To validate this, the eccentricity,

semi-major and semi-minor axes, and diameter of the outer and innermost contours

have been collected for the 40◦ measurement. These measurements have also been

scaled using the factor determined in Chapter 3, to account for how a change in θs

does not correspond directly to an equivalent change ∆β (this depends on θi). Table

4.25 show the results for the inner and outer contours.
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Table 4.25: For both peaks, the semi-major and semi-minor axes and diameter are
smaller for the 40◦ measurements compared to the 20◦ measurements, as these extend
a smaller region in φs. The center x and y coordinates are also measured from slightly
more consistent points for each contour, although this position still varies significantly
between the inner and outer contours of Peak 2. The eccentricities are relatively
similar to the 20◦ measurements.

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Solar Panel 40 0.75 26.17 19.61 22.60 133.71 107.88
(Peak 1)
Outer
Solar Panel 40 0.29 138.31 40.18 59.20 134.24 166.12
(Peak 2)
Outer
Solar Panel 40 0.67 8.92 6.00 7.21 134.07 107.22
(Peak 1)
Inner
Solar Panel 40 0.71 28.95 20.58 24.35 162.80 164.72
(Peak 2)
Inner

As demonstrated by Figures 4.31-4.32 in comparison to Figures 4.28-4.29, the di-

ameter, semi-major and semi-minor axes of the 40◦ measurements are smaller than

those of the 20◦ measurements reported in Tables 3.1 and 3.2. The center x and y

coordinates, however, are measured from slightly more consistent points when com-

paring the inner and outer contours for each peak, varying more for Peak 2 than for

Peak 1. The eccentricities of Peak 1’s and Peak 2’s contours are relatively similar

for the 20 and 40◦ measurements, excepting the inner contours for Peak 2. For Peak

1, the outer contour measures an eccentricity below the baseline, however, the inner

contour measures an eccentricity slightly above the baseline, continuing the trend of

recording this peak as leaning isotropic. The inner contour of Peak 2 is similar to the

baseline eccentricity, although the outer contour far exceeds the baseline in eccentric-

ity, indicating a high degree of asymmetry/anisotropy. Table 4.26 further investigates
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the symmetry of this dataset as well as the overall eccentricity for each contour, and

the full width half maximum (FWHM).

Table 4.26: The solar panel is slightly more symmetric at 40◦ than the 20◦ data,
however, the percentage differences are still higher than those recorded for previ-
ous materials. Peak 1 becomes less isotropic, measuring a higher mean eccentricity,
while the standard deviation of eccentricity increases for Peak 2, despite recording a
lower mean eccentricity. Overall, Peak 1 becomes slightly less isotropic, while Peak 2
maintains a similar degree of anisotropy.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Solar Panel (Peak 1) 40 2685033.00 0 1634.33 0.69 0.04 0.0008
Solar Panel (Peak 2) 40 n/a n/a n/a 0.52 0.18 n/a

Overall, the 40◦ measurements are slightly more symmetric about φs=π than the

20◦ measurements. This is likely due to the fact that the 40◦ extends a smaller range

in φs, which resulted in overall lower percentage differences for the symmetry. Peak

1 decreases in isotropy, with a higher overall eccentricity compared to the baseline

(despite recording the baseline standard deviation), although still leaning towards

isotropy. Peak 2 decreases in eccentricity, however, the standard deviation increased,

registering this peak as leaning anisotropic. The FWHM was significantly smaller for

40◦ (25 times smaller), part of which is likely due to the smaller extent of φs (which

is directly related to ∆α for this θi). A smaller φs range will result in a smaller ∆α

and thus a smaller FWHM. However, since the range was only 2 times smaller, this

difference (25 times smaller) is too large to merely be accounted for by this smaller

φs range.

4.8.3 60◦ Measurements

At 60◦, the BRDF peak value drops by a factor of 1.17 from the 40◦ data, a reverse

from the increases observed for the previous materials. Additionally, as can be seen
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in Figure 4.33, Peak 2 begins to disappear off of the plot, which resulted in collecting

additional data with the detector arm slewed an extra 0.3◦ to fully capture the second

peak. Peak 2 is now located at θs=61.65◦, and φs=180.43◦.

Figure 4.33: Contour plots of the BRDF data in scatter coordinate space for the solar
panel illuminated at 60◦. The second peak is located slightly off of the captured CCD
data, resulting in the detector arm (where the CCD was mounted) being slewed an
extra 0.3◦ to fully capture the second peak. The first plot is the full plot, and the
second is the zoom of Peak 2. Peak 1 does not show up on this plot (it must be
converted to a log scale to see).

Figures 4.34-4.35 show Peak 1 and Peak 2, respectively in direction cosine space. This

data was taken from the slewed detector arm measurements (and this data set was

used for the rest of this study in lieu of the original data).

Figure 4.34: Peak 1 appears to stretch more in ∆β compared to previous measure-
ments. This is likely due to the fact that eccentricity generally increases as θi increases.
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Figure 4.35: Peak 2 appears more symmetric in direction cosine space than the 20◦

and 40◦ measurements. It also appears slightly different shape wise, which may be
due to a different part of the sample being illuminated as the detector arm was slewed
0.3◦.

In Figure 4.35, Peak 2 has noticeably shifted around in direction cosine space

from its location measured for 20◦ and 40◦. It also appears to be more symmetric

in direction cosine space compared to the lower θi. Part of this could be due to

the additional slewing of the detector arm. However, Peak 1 (Figure 4.34) is also

slightly askew, as the main peak (not including the diffraction pattern) extends a

wider range in ∆β as compared to the lower θi measurements. Table 4.27 provides

measurements of the semi-major and semi-minor axes and diameter, confirming that

Peak 1 is somewhat wider in ∆β, as the semi-major axis is nearly two times larger than

the 40◦ measurement. However, Peak 2 is also a lot more circular (eccentricity closer

to one) compared to smaller θi. These widely varying eccentricity measurements for

both peaks are an indication that rotatational symmetry is not being maintained as

θi changes, portending anisotropy.
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Table 4.27: Measurements of the inner and outer contours for both Peak 1 and Peak 2
when θi=60◦. Peak 1 is much more eccentric for 60◦ than for lower θi measurements.
It is also somewhat larger in terms of the outer contour dimensions. Peak 2 varies from
previous measurements in that it is much less eccentric, and is shifted in direction
cosine space (relying upon the Center X and Center Y columns).

Material Angle Eccentricity Semi-Major Semi-Minor Diameter X Center Y Center
(Deg) Axis Scaled Axis Scaled Scaled (Pixels) (Pixels)

(Pixels) (Pixels)
Solar Panel 60 0.49 75.70 36.88 52.17 137.46 111.16
(Peak 1)
Outer
Solar Panel 60 0.74 87.49 64.93 54.80 102.13 144.02
(Peak 2)
Outer
Solar Panel 60 0.41 58.29 24.12 36.90 135.79 110.17
(Peak 1)
Inner
Solar Panel 60 0.83 26.15 21.78 23.75 106.75 143.06
(Peak 2)
Innerr

Table 4.27 confirms a lot of what was observed by looking at Figures 4.34 and

4.35. Peak 1 has become much more eccentric than measurements of Peak 1 at

lower θi, well exceeding the baseline eccentricity. The outer contour for Peak 1 is

also larger than that of the 40◦ measurements. Peak 2 is significantly smaller than

the 40◦ measurements, and it is shifted in direction cosine space, when one looks at

the Center X and Center Y columns in Table 4.27. Peak 2 also records eccentricity

measurements for both the inner and outer contour below the baseline, a reversal of

previous measurements. This indicates a lack of rotational symmetry, as mentioned

previously. Table 4.28 summarizes the contour, symmetry and FWHM data for the

solar panel at θi=60◦.
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Table 4.28: The FWHM here is larger than that at 40◦, but smaller than the 20◦

measurement. The eccentricity and standard deviations are comparable to previous
measurements. The 60◦ measurement is more symmetric about φs, but this is likely
due to the smaller range that the plot extends in φs.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Solar Panel (Peak 1) 60 1912242.60 1.02×10−5 1190.47 0.47 0.05 0.0017
Solar Panel (Peak 2) 60 n/a n/a n/a 0.78 0.03 n/a

In Table 4.28, the standard deviation of eccentricity remains relatively similar to

measurements made at lower θi, although the eccentricity is on average lower for Peak

2 (in fact, lower than the baseline eccentricity), and higher for Peak 1 (far exceeding

the baseline). These large variations from previously recorded eccentricities indicates

a lack of rotational symmetry as θi increases. The 60◦ data is also more symmetric

in φs than the 40◦ data, however, this is likely due to the fact that the plot extends

a smaller range in φs. The FWHM is lower than that that of the 20◦ measurement,

but higher than that of the 40◦ measurement.

4.8.4 Summary of Solar Panel Data

Overall, the solar panel exhibits characteristics of a highly anisotropic material.

Firstly, the existence of a diffraction pattern for each of the measurements at varying

θi, indicates a highly anisotropic material. The diffraction pattern has been taken

into account in the X-center and Y center measurements of Peak 1 in Table 4.29. The

algorithm developed by this study indicates that this material is anisotropic, as it reg-

isters as anisotropic for each category with the exception of the scaled diameter entry

for Peak 2, which has a standard deviation below the baseline. Of these parameters,

the degree of asymmetry about φs is the most significant, exceeding the baseline by a

factor of 200. As for the scaled diameters, the standard deviations of both peaks are
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lower than those measured for previous materials. However, as previously mentioned,

this parameter is a shaky metric, and does not immediately signify material isotropy.

It also does not account for alignment uncertainty. For this sample, it was difficult to

determine if the sample was aligned with the cover glass or the solar cell underneath.

The cover glass is not completely flat, as it is glued on, producing anisotropies. The

extra slewing at 60◦ produced some additional uncertainty in the measurements, as

the eccentricity registered as lower there, which may be due to illuminating a different

part of the sample.

Looking at the other parameters, the standard deviation of the FWHM is on the

order of the mean, indicating anisotropy. The x and y centers register the highest

standard deviations, as the inclusion of the diffraction pattern contours significantly

increased the standard deviation of Peak 1 (this is where the diffraction pattern was

taken into account). While the mean eccentricities recorded for both peaks are lower

than measured for Kapton and Polished Aluminum samples, the standard deviations

are quite high. This is because the eccentricities vary significantly between different θi

measurements, indicating a lack of rotational symmetry, and thus anisotropy. Table

4.29 below summarizes these results for the solar panel. Overall, the parameters in

Table 4.29 signify that this material is anisotropic, as predicted by the initial visual

inspection of the solar panel.
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Table 4.29: The solar panel records the highest degree of asymmetry in φs out of all the
materials so far. It also records high standard deviations in the center measurements,
when the diffraction pattern is taken into account. These factors, paired with the
high standard deviations in eccentricity and FWHM indicate that this sample is
anisotropic, as predicted.

Material Mean Scaled Scaled X Y Eccentricity Classification
Symmetry Diameter FWHM Center Center
(% dif) (Pixels) (∆α) (Pixels) (Pixels)

Solar Panel 1814.67 36.67 0.011 130.83 96.04 0.65 Anisotropic
Peak 1 ± 731.25 ± 14.84 ± 0.011 ± 27.93 ± 56.11 ± 0.13
Solar Panel n/a 55.79 n/a 135.59 161.38 0.52 n/a
Peak 2 ± 3.04 ± 53.29 ± 27.02 ± 0.20

4.9 Metal Mesh

This section details measurements of the metal mesh taken at 20◦ and 40◦. No

60◦ measurement was taken due to an issue with being able to adequately slew and

collect data at this angle. The uncertainty in alignment for this sample was 0.5◦.

4.9.1 20◦ Measurements

Figure 4.36 shows the metal mesh in scatter coordinate space. The BRDF of the

sample is very low, maxing out around 0.9. This is unsurprising, as the mesh sample

is highly transmissive as opposed to reflective.

94



www.manaraa.com

Figure 4.36: Plot of the metal mesh in scatter coordinate space for θi=20◦. The peak
BRDF value is very low, maxing out around 0.9.

When Figure 4.36 is converted to direction cosine space, one finds that there are

no ellipses to be extracted from the image. The BRDF is too low and the sample

too diffuse for one to use this algorithm. It is obvious that there is a diffraction

pattern present in the data, however, even upon narrowing the limits of the plot,

the algorithm fails to extract reasonable fits. This here is one of the shortfalls of

the image processing technique. Figure 4.37 shows the metal mesh data in direction

cosine space for 20◦.

Figure 4.37: Plot of the metal mesh in direction cosine space for 20◦. The algorithm
is unable to fit ellipses to the data, as it is too diffuse and the BRDF values are too
low.

While the algorithm was unable to fit ellipses and measure parameters such as

95



www.manaraa.com

eccentricity or diameter, data about the symmetry and FWHM was still collected.

This data is summarized in Table 4.30. While the mesh was less symmetric in φs than

the lab mirror, on average, the metal mesh had a higher degree of symmetry than

the solar panel, kapton and polished aluminum samples for 20◦. This again indicates

another shortfall of the algorithm, as the sample is clearly visually less symmetric

than all of the other samples with its 2D grid. Thus, one cannot use the symmetry

parameter on diffuse samples.

Table 4.30: The symmetry of the metal mesh is higher than the symmetry of all of
the other materials, excepting the lab mirror for 20◦, as the percentage differences
were the second lowest (excepting minimum difference). The FWHM is rather small
compared to the other materials.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Metal Mesh 20 5511.24 0 189.37 n/a n/a 0.0014

4.9.2 40◦ Measurements

Figure 4.38 shows the metal mesh data for θi=40◦. As with the 20◦ measurement,

the BRDF remains low, with a peak around 1.4 and representing an increase in BRDF

by a factor of about 1.6.
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Figure 4.38: Contour plot of the BRDF for the metal mesh at 40◦. The peak BRDF
increases by a factor of 1.6 here, however, still maintaining a low BRDF with peak
around 1.4.

Figure 4.39 shows an attempt to transform the 40◦ measurements to direction

cosine space. As with the 20◦ measurement, the sample is too diffuse to produce

any ellipses that can be detected by the image processing algorithm. However, it

is slightly more evident in this plot that the metal mesh produces a 2D diffraction

pattern.

Figure 4.39: Plot of the metal mesh in direction cosine space for 40◦. The algorithm
is unable to fit ellipses to the data, as it is too diffuse, however, the 40◦ appears to
show signs of a diffraction pattern produced by the material.

As with the 20◦ measurements, no ellipses were able to be fit and measured by

the algorithm. However, the symmetry and FWHM were still able to be measured,

and are summarized in Table 4.31. The mean symmetry remains high in comparison
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to the other samples, with the exception of the mirror sample, indicating isotropy,

contrary to the initial prediction.

Table 4.31: While the max and min symmetry are lower, the mean symmetry of the
metal mesh is higher at 40◦ than at 20◦. This is likely due to the smaller spatial
extent in φs. The FWHM decreases by less than half, which is slightly higher than
expected. Overall, the metal mesh remains relatively symmetric compared to the
other samples.

Material Angle Max Dif Min Dif Mean Dif Mean STD FWHM
(Deg) Symmetry Symmetry Symmetry Eccentricity Eccentricity (∆α)

(%) (%) (%)
Metal Mesh 40 7173.66 2.12×0−6 162.05 n/a n/a 0.0008

4.9.3 Summary of Metal Mesh Data

The experimental setup prohibited 60◦ data from being collected. Thus, only the

results for 20◦ and 40◦ are shown. Overall, this sample was difficult to classify us-

ing this algorithm, as there were only two indicators for isotropy for this material,

compared to the six normally used to classify the material. This shows a short-fall

of the overall algorithm, as diffuse samples cannot be easily classified as isotropic or

anisotropic. However, this would have been a shortfall were image processing techn-

qiues able to extract parameters such as diameter. This is because the diameter only

remains constant as θi increases when the sample is very specular. The algorithm

attempted to classify the sample as moderately isotropic, as the symmetry was rela-

tively high (second highest out of all samples), and the FWHM (when scaled) had a

very low standard deviation (0.0001). However, the sample is obviously anisotropic

as it produces a 2D diffraction grid. Had the algorithm been able to detect a distinct

pattern, the sample would have registered as more anisotropic. Clearly, ellipse de-

tection does not work well for 2D diffraction patterns, nor for more diffuse samples.

This sample ultimately exposed a flaw in the algorithm. The results of the algorithm
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are summarized in Table 4.32.

Table 4.32: The algorithm failed to classify the sample. The overall symmetry of the
material is the second highest out of all of the materials. Additionally, the standard
deviation of the scaled FWHM is very low (0.0001), adding points in favor of isotropy.
Without the other parameters, it is difficult to classify the material further, indicating
a shortfall in the algorithm.

Material Mean Scaled Scaled X Y Eccentricity Classification
Symmetry Diameter FWHM Center Center
(% dif) (Pixels) (∆α) (Pixels) (Pixels)

Metal Mesh 175.71 n/a 0.0015 n/a n/a n/a n/a
± 19.32 ± 0.0001

4.10 Analysis

In Sections 4-8 of this chapter, each material was discussed and an initial assess-

ment of the material’s isotropy/anisotropy was given. This section expounds upon

these initial assessments and provides an ranking of each material from most isotropic

to most anisotropic, based upon the parameters and baselines established in Chapter

3.7. Table 4.33 is taken from Chapter 3.7 to remind the reader of the established

baselines.

Table 4.33: Table summarizing the various baselines and weights for each parameter
of isotropicity. STD stands for standard deviation.

Baseline Scaled Diameter X/Y FWHM Eccentricity Mean
(STD) Center (STD) (Value + STD) (% difference)

(STD)
Value 3.35 3.23 0.002 0.73 ± 0.04 9.11
Weight 0.05 0.18 & 0.18 0.05 0.18 & 0.18 0.18

Using these baselines, each material was measured in terms of how much it devi-

ated from the baseline, and assigned a score. Each parameter was weighted differently,

depending upon the reliability of the parameter in assessing material isotropy (ref. Ta-

ble 4.33). The columns in that were weighted the highest (with a weight of 0.18) were
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the mean symmetry, x center and y center, as well as the eccentricity column (both

eccentricity close to 1 and low standard deviation were factors), whereas the scaled

FWHM and scaled diameter were weighted less (weight of 0.05). This is because any

scaling factor introduced reduced the level of confidence in that result. The diameter

was already found to be a problematic metric, as it depends upon the contours set by

Python when the BRDF is plotted. As θi increases, the peak BRDF value increases,

and the data that is included in the plot (within two orders of magnitude below the

peak), the contours level can shift, creating variations in diameter, that do not neces-

sarily correlate well with the rotational symmetry phenomenon observed by Harvey.

Another issue with the scaled diameter term is due to uncertainty in alignment. As

the sample is rotated, the beam may drift on the sample, or the spot size becomes

elongated, changing the diameter measurement. Thus, the scaled diameter term was

mostly used to determine between the Kapton and Polished Alumnium which was

more anisotropic, as both had similar rankings before that was taken into account.

To rank each of these materials, weights were assigned to each of the six metrics.

The mean symmetry, x center, y center, mean eccentricity and standard deviation

of eccentricity were weighted 0.18 and the scaled diameter and scaled FWHM, mean

eccentricity and standard deviation of eccentricity were weighted 0.05. The percent-

age difference between the measured value and the baseline was calculated and then

weighted by its respective weight. Negative values represent when the data point was

below the baseline. Each row then received a final score by summing the weighted

percentage differences. The metal mesh sample was not ranked as it could not be

assessed for each category. Table 4.34 shows the results of each parameter after being

weighted, and the final score for each material. For the solar panel, the higher score

was included in the calculation of the final score. In this case, the Peak 2 data used

for the x center column, and the Peak 1 data used for the scaled diameter and y
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center columns. The Peak 2 data was also used for the eccentricity column, as this

metric assesses the eccentricity of contours about the peak BRDF value. The lowest

score meant that it was the most isotropic material, and the opposite was the case for

the highest score. Scores less than 1 indicate a highly isotropic material. Scores 1-10

indicate a material that leans isotropic. Scores 10 and greater indicate an anisotropic

material, and scores higher than 30 indicate a highly anisotropic material.

Table 4.34: The materials are listed from most isotropic to most anisotropic. Some
categories were weighted higher than others to produce this order. For example, the
symmetry column had a higher weight than the scaled diameter and scaled FWHM.
This is because any scaling factor introduced produced some degree of uncertainty
about that result. This is why the lab mirror is rated higher than the solar panel, even
though the standard deviation is higher on the scaled diameter for the lab mirror.
Overall, the parameters that were most important were the symmetry, x center and y
center and the standard deviation in eccentricity (paired with the eccentricity being
closest to 1).

Material Scaled X Y Scaled Mean STD Mean Overall
Diameter Center Center FWHM Eccentricity Eccentricity Symmetry Score

Lab Mirror 0.21 -0.10 -0.09 0.08 -0.02 0.27 0.01 0.36
Kapton 0.23 0.27 0.24 0.20 0.14 0.05 9.25 10.38
Polished 0.78 2.54 0.94 0.10 0.07 0.68 8.14 13.25
Aluminum
Solar Panel 0.17 2.79 2.95 0.23 0.05 0.72 35.68 42.59

In terms of the robustness of the algorithm in identifying materials as isotropic or

anisotropic, some parameters were more robust than others. As discussed previously,

the scaled diameter was the least robust parameter, as it was subject more so to the

contours set by Python as opposed to actually measuring rotational symmetry. It

was able to distinguish the Polished Aluminum sample as being more anisotropic,

but failed on the solar panel and mirror samples, identifying the solar panel as more

isotropic than the smoothly polished mirror. This diameter metric is also subject to

the uncertainties in alignment, as the spot size can be elongated as θi increases, caus-

ing the diameter to change. The standard deviation in eccentricity also was slightly
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less robust than the other parameters, identifying the Kapton as more isotropic than

the mirror, despite the fact that Kapton has a significantly higher eccentricity. Inter-

estingly, at each θi, the eccentricity was 0.01 for the mirror, but taking into account

every contour measurement changed the standard deviation significantly. This was

because the eccentricity changed with θi, for the mirror sample. However, this was

also observed for the simulated data. A more robust measurement would be to av-

erage the standard deviation of eccentricity for each θi to calculate this standard

deviation, and thus more accurately registering a sample as isotropic/anisotropic.

Otherwise, each of the metrics performed relatively well in terms of matching the

predicted isotropy/anisotropy, as for each of the categories (excepting the diameter

and standard deviation of eccentricity), the lab mirror rendered the lowest score. The

x/y center, and the mean eccentricity categories ended up being the best measure-

ments of rotational symmetry in direction cosine space. As contour levels changed

with θi, these parameters acted as substitutes for measuring this symmetry. The more

consistent these parameters were with θi, denoted a high degree of isotropy.

Measuring the mean symmetry in φs was generally a robust metric, with the

exception of the metal mesh material. This was because the sample, with clear grid

lines that should produce anisotropic reflection, rendered as moderately isotropic with

this parameter, measuring a high degree of symmetry in this metric than all of the

other samples excepting the mirror sample. This was likely due to the fact that

the grid produced such small BRDFs, which in turn produced small differences, and

lower overall mean percentage difference. The parameter of mean symmetry showed

a flaw in the overall algorithm, in that it did not perform well on diffuse data nor

on samples which produce a 2D diffraction grid. However, this result was not wholly

unexpected, as the algorithm was tuned to look specifically at the data near the

specular peak, looking ±2◦ off peak θs and ±5◦ off peak in φs. To confirm this,
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the simulated isotropic data was given another look to define the conditions under

which this algorithm would work. It was found that the algorithm would likely break

when the BRDF dropped below 100 sr−1, or in the case where σg is greater than 0.1.

Figures 4.40-4.41 show where the BRDF is no longer elliptical in scatter space, and

where the algorithm would break, at σg greater than 0.1.

Figure 4.40: Elllipses can still be detected here, where σg=0.1.

Figure 4.41: The algorithm should break, where the BRDF drops below 100, and σg
is greater than 0.1. At these points, the plot transitions from an elliptical pattern to
a horizontal pattern, where no ellipses can be detected, and the mean symmetry in
φs metric will not work.
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4.11 Summary

Overall, the algorithm was able to successfully identify four out of five materials

as being conclusively isotropic or anisotropic. The conditions for which the algorithm

will work were also defined, as samples where the BRDF drops below 100 sr−1, and

where (if modeled using the Beckmann distribution) σg is greater than 0.1 cannot be

processed by this material. The metal mesh sample was an example where the BRDF

was too low, and the presence of the 2D diffraction grid broke the algorithm. The

algorithm works best on highly specular materials, and becomes less reliable as the

material becomes more diffuse. The x/y center and mean eccentricity criterion are

the most robust parameters of the algorithm, able to measure rotational symmetry

when the contour levels shift with θi better than the scaled diameter metric. Met-

rics that were flawed or need to be adjusted were the scaled diameter metric (which

should be discarded, or adjusted to account for the alignment uncertainty) and the

standard deviation of eccentricity, which should be adjusted to be the average stan-

dard deviation for each θi. Overall, the lab mirror was the most isotropic and similar

to the beam signature and simulated data. The solar panel was the most anisotropic

material, as it produced two highly asymmetric peaks as well as a diffraction pattern,

contributing highly to the anisotropicity, with the Kapton and polished aluminum

samples falling in between the mirror and solar panel in terms of anisotropicity. The

Kapton sample, which was predicted to lean isotropic, measured barely anisotropic

(just above 10). This is possibly due to the fact that if Kapton is not laid completely

flat, the reflectance can change. The final results are summarized in Table 4.35.
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Table 4.35: Table summarizing the initial prediction compared to the classification
done by the algorithm.

Material Prediction Score Classification
Lab Mirror Isotropic 0.36 Isotropic
Kapton Leans Isotropic 10.38 Anisotropic
Polished Aluminum Anisotropic 13.25 Anisotropic
Solar Panel Highly Anisotropic 42.59 Highly Anisotropic
Metal Mesh Anisotropic n/a n/a
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V. Conclusion

5.1 Conclusion

This study began with the goal of developing an algorithm to classify materials as

isotropic or anisotropic by merely looking at the BRDF data as opposed to having to

fit the data to models to determine the degree of isotropy. First, the characteristics

of both isotropic and anisotropic microfacet models were investigated to develop a

metric of anisotropy. The microfacet models employed began with looking at the

Beckmann distribution function and expanding to the full BRDF data to generate

simulated data sets. These simulated data sets generated were 2D contour plots of

the BRDF. From the isotropic models, it was found that in scatter coordinate space,

isotropic materials reflect light symmetrically about φs = 180◦. The isotropic models

also produced data sets/contour plots that were rotationally symmetric (when scaled

appropriately), with a constant diameter as θi increased in direction cosine space.

Rotational symmetry was defined as maintaining a near constant eccentricity (low

standard deviation) of contours in direction cosine space, and various parameters such

as the eccentricity and diameter were measured using image processing techniques.

The results of investigating the isotropic models helped generate six metrics, which

included measurements of the scaled diameter, scaled FWHM, mean and standard

deviation of eccentricity, and consistency in center for each ellipse/contour measured.

These metrics are the used to generate a score indicating the degree of anisotropy.

While the anisotropic models produced some insights into anisotropy, the mod-

els fell short in terms of realistically modeling anisotropic data. As expected, the

anisotropic models produced results that were no longer symmetric about φs=180◦.

However, these models also produced contour plots in scatter coordinate space that

did not adequately account for differing surface roughness in the x and y directions
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of a material. While the position of light scattering in a hemisphere depends on the

light’s incidence angles, θi and φi, it also depends on the surface characteristics upon

which the light is reflected. The models do not adequately take into account the

varying roughness, as the location where light is scattered solely depends on θi and

φi. Changing the parameter controlling the surface roughness in x and y only results

in changing the size of the reflected beam, not the location. This was a useful investi-

gation, as it showed that the current anisotropic microfacet models do not adequately

represent actual anisotropic surfaces. Thus, the results of the anisotropic models did

not contribute to development of the final algorithm used to process actual BRDF

data.

The developed algorithm was able to identify materials of varying isotropy, work-

ing best on highly specular materials. Each of the materials was first classified as

isotropic or anisotropic by a qualitative assessment of the material’s surface. The

first material was a solar panel sample, which consisted of a top clear layer, and a

darker surface underneath with a series of horizontal grid conduction lines. The ma-

terial is clearly anisotropic due to the directionality of the grid lines (which generated

a diffraction pattern). The algorithm was able to successfully identify this surface as

anisotropic. The second surface was a Kapton film, which is a semi-transparent film,

with no visible machine lining, and some scratches. The algorithm classified this sur-

face as semi-anisotropic, which is likely due to the sample not being laid completely

flat, changing the reflectance. The polished aluminum was more clearly anisotropic as

the circular polishing lines on the sample was readily visible. As such, the algorithm

classified this surface as more anisotropic than the Kapton sample. The lab mirror

was the smoothest appearing surface (and was qualitatively classified as such), and

the algorithm was able to identify the sample as being slightly less isotropic than the

beam signature, which was the baseline. However, the metal mesh sample was unable
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to be classified, and was useful in determining the limits of the algorithm. Samples

where the BRDF falls below 100 sr−1 cannnot be classified by the algorithm, and sam-

ples with σg greater than 0.1 (using the isotropic Beckmann distribution function)

are too optically rough to be classified.

Overall, the the algorithm is robust for relatively specular materials, as employs

multiple parameters to successfully analyze out-of-plane BRDF data to classify the

degree of isotropy of materials. In its ability to classify materials depending on

their degree of isotropy, this algorithm will improve modeling of optical scatter. For

example, in light curve analysis, understanding that a solar panel will provide an

anisotropic reflection helps not only with tracking of space-based objects, but also in

determining other characteristics of said object such as its geometry. Remote sensing

and scene generation applications rely upon accurate BRDF models. For example,

in remote sensing, accurate modeling of BRDF allows users to determine properties

of a remotely sensed scene. This algorithm is better able to classify materials than

attempting to fit BRDF data to existing models and then determining the degree of

isotropy. As shown in this study, anisotropic models are flawed in that they model

non-physical aspects of surface reflection. By circumventing the step of fitting the data

to models to determine the surface characteristics, the BRDF can be more accurately

characterized, improving the process of extracting scene properties for remote sensing.

5.2 Recommendations for Future Work

From this work, there are several possible avenues for refinement of the algorithm.

Firstly, is the scaled diameter metric included in this algorithm. Generally, this metric

poorly classified materials, labeling the lab mirror sample as more anisotropic. This

was due to the fact that the peak BRDF value changed with θi, changing the level of

the outermost contour for which the diameter was measured. Even when the diameter
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was scaled by an appropriate factor, the standard deviation was significantly higher

than the baseline for the lab mirror sample. This also possibly due to some alignment

uncertainty, causing the beam to elongate at higher θi, and impacting the diameter

measurements. Ultimately, the scaled diameter was useful in distinguishing between

the degree of isotropy of the Kapton and Polished Aluminum samples. However, it is

suggested that this parameter is either removed from the overall algorithm, or a new

metric is developed to establish rotational symmetry of isotropic materials in direction

cosine space. The eccentricity, FWHM and x/y center metrics serve as intermediate

measures of such symmetry, but the diameter metric does not work with contour plots

of BRDF. Additionally, another suggestion for the current algorithm is to determine

the standard deviation of eccentricity for each θi measurement for each material, and

average this standard deviation to categorize materials.

This algorithm fell short in successfully classifying all five materials, as it was not

able to classify the metal mesh material. As such, a possible area for future work

would be to develop an algorithm that can classify highly transmissive materials or

materials that create 2D diffraction patterns. The mean symmetry in φs technique

could possibly be refined, possibly drawing on measurements of BTDF to classify these

types of materials. The ellipse detection method would likely have to be abandoned.

Clearly, the image processing technique of analyzing the contours of a specular BRDF

does not work for these types of samples.

Finally, the most ambitious undertaking would be to develop/improve existing

anisotropic microfacet models. Currently, the microfacet models are only able to take

into account how changing the incidence angles (θi,φi) changes the angles to where

light scatters. These models also rely heavily on aligning the sample well so that

φi=φmaterial. Changing the σ, or width of the distribution function (which is related

to the surface roughness), only changes the width of the reflected beam, not where
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it scatters. The surface characteristics must also play a role in changing where light

scatters. In this, one may have to draw more upon physical optics models to achieve

such, as current microfacet models rely upon a series of trigonometric functions (which

are based more upon the geometric aspects of optics). The physical optics models

can better characterize processes such as diffraction (observed with the solar panel

sample) as well as surface characteristics such as differing surface heights in x and y.
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The Bi-directional Reflectance Distribution Function (BRDF) is used to describe reflectances of materials by calculating the 
ratio of the reflected radiance to the incident irradiance. While it was found that  isotropic BRDF microfacet models 
maintained symmetry about \phi_s = \pi, such symmetry was not maintained about the \theta_s = \theta_i axis, except for 
close to the specular peak. This led to development of a novel data-driven metric for how isotropic a BRDF measurement 
is. Research efforts centered around developing an algorithm that could determine material anisotropy without having to fit 
to models. The algorithm developed here successfully classified the degree of anisotropicity in 4 out of 5 samples.
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